• 论文 • 上一篇    

两阶段Arrhenius方程参数优化算法

金鑫, 汪韬   

  1. 中广核研究院有限公司, 深圳 518028
  • 收稿日期:2022-04-02 发布日期:2022-09-09

金鑫, 汪韬. 两阶段Arrhenius方程参数优化算法[J]. 数值计算与计算机应用, 2022, 43(3): 329-342.

Jin Xin, Wang Tao. A PARAMETER OPTIMIZATION ALGORITHM FOR TWO STAGE ARRHENIUS EQUATIONS[J]. Journal on Numerica Methods and Computer Applications, 2022, 43(3): 329-342.

A PARAMETER OPTIMIZATION ALGORITHM FOR TWO STAGE ARRHENIUS EQUATIONS

Jin Xin, Wang Tao   

  1. China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518028, China
  • Received:2022-04-02 Published:2022-09-09
锆合金腐蚀是燃料棒堆内重要的物理过程之一,它直接影响核电厂的经济性和安全性.根据锆合金腐蚀机理,在工程上通常采用两阶段Arrhenius方程来描述该物理过程,并通过试验数据来拟合方程中的参数.本文基于锆合金腐蚀试验数据和两阶段Arrhenius方程的特征,建立了基于Gauss-Newton法和线搜索法的参数优化算法,并使用非扰动和扰动的测试数据验证了算法的有效性.
Zirconium alloy corrosion is one of the most important physical processes in the fuel rod, which directly affects the economic performance and safety of nuclear power plant. According to the corrosion mechanism of zirconium alloy, the two-stage Arrhenius equation is usually used to describe the corrosion process in engineering, and the parameters in the equation are fitted through the experimental data. Based on the experimental data of zirconium alloy corrosion and the characteristics of two-stage Arrhenius equations, a parameter optimization algorithm based on Gauss Newton method and line search method is established, and the effectiveness of the algorithm is verified by three numerical examples.

MR(2010)主题分类: 

()
[1] Jin X, Wei X, Liu X and Deng Y. JASMINE:A Fuel Rod Thermal-Mechanical Performance's Code, TopFuel, 2016.
[2] Cheng B and Adamson R B. Mechanistic Studies of Zircaloy Nodular Corrosion, Zirconium in the Nuclear Industry, 1987. Doi:10.1520/STP28134S.
[3] Cox B. Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys[J]. Journal of Nuclear Materials, 2005, 336(2-3):331-368.
[4] Kritsky V G, Petrik N G, Berezina I G and Doilnitsina V V. Effect of water chemistry and fuel operation parameters on Zr+1%Nb cladding corrosion. International Atomic Energy Agency, Vienna, 1997.
[5] MacDonald P E and Thompson L B. MATPRO:a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior. US Report:TREE-NUREG-1180, 1976.
[6] Garzarolli F, Jung W, Schoenfeld H, Garde A M, Parry G W and Smerd P G. Waterside corrosion of Zircaloy fuel rods. EPRI Report:EPRI-NP-2789, 1982.
[7] Billot P, Beslu P, Giordano A and Thomazet J. Developments of a mechanistic model to assess the external corrosion of the Zircaloy cladding in PWRs. Zirconium in the Nuclear Industry, 1980.
[8] Forsberg K, Limbäck M and Massih A R. A model for uniform Zircaloy clad corrosion in pressurised water reactors. Nuclear Engineering and Design, 1995, 154(2):157-168.
[9] Polley M V and Evans H E. A comparison of Zircaloy oxide thicknesses on Millstone-3 and North Anna-1 PWR fuel cladding. EPRI Report:EPRI-TR-102826, 1993.
[10] Thomas J W. Numerical Partial Differential Equations:Finite Difference Methods[M]. Springer, 1995.
[11] Nocedal J and Wright S J. Numerical Optimization[M]. Springer, 2006.
[12] 徐正伟, 王皓, 胡兵, 张世全.基于非线性最小二乘的Arrhenius方程参数估计[J].数值计算与计算机应用, 2019, 40(4):12.
[1] 梁志艳, 张凯院, 耿小姣. Riccati方程子矩阵约束对称解的非精确Newton-MCG算法[J]. 数值计算与计算机应用, 2015, 36(4): 288-296.
[2] 张凯院, 宋卫红, 王娇. 一类广义Riccati矩阵方程对称解的双迭代算法[J]. 数值计算与计算机应用, 2013, 34(4): 286-294.
阅读次数
全文


摘要