• 论文 • 上一篇    

求解双层集值混合变分不等式的惯性外梯度算法

蒋艺, 龙鑫, 王中宝   

  1. 西南交通大学数学学院, 四川 611731
  • 收稿日期:2021-05-03 发布日期:2022-06-10
  • 通讯作者: 王中宝,Email:zhongbaowang@hotmail.com.
  • 基金资助:
    国家自然科学基金(11701479,11526170)资助

蒋艺, 龙鑫, 王中宝. 求解双层集值混合变分不等式的惯性外梯度算法[J]. 数值计算与计算机应用, 2022, 43(2): 221-236.

Jiang Yi, Long Xin, Wang Zhongbao. INERTIAL EXTRAGRADIENT ALGORITHMS FOR SOLVING BILEVEL MULTIVALUED MIXED VARIATIONAL INEQUALITIES[J]. Journal on Numerica Methods and Computer Applications, 2022, 43(2): 221-236.

INERTIAL EXTRAGRADIENT ALGORITHMS FOR SOLVING BILEVEL MULTIVALUED MIXED VARIATIONAL INEQUALITIES

Jiang Yi, Long Xin, Wang Zhongbao   

  1. School of Mathematics, Southwest Jiaotong University, Chengdu 611731, China
  • Received:2021-05-03 Published:2022-06-10
本文在Tseng外梯度算法的基础上,引入了一种求解双层集值混合变分不等式的惯性外梯度算法.该算法的步长是非单调自适应的,结合惯性加速技巧,在集值映射是单调且Lipschitz连续的假设下,证明了该算法所产生的序列强收敛到双层集值混合变分不等式的解,进行的数值实验表明惯性外梯度算法优于一些已有的算法.
In this paper, based on Tseng's extragradient algorithm, inertial extragradient algorithm for solving bilevel multivalued mixed variational inequalities is presented. The step sizes of the proposed algorithm are adaptive and non-monotonic. Combined with the inertial acceleration techniques, it is proved that the sequence generated by the algorithm converges strongly to solution of the bilevel multivalued mixed variational inequalities, under the assumption that the multi-valued mapping is monotone and Lipschitz continuous. Some numerical experiments have showed that the inertial extragradient algorithm has a competitive advantage over some existing algorithms.

MR(2010)主题分类: 

()
[1] 陈园,何诣然.求解伪单调型变分不等式的一种投影算法[J].四川师范大学学报(自然科学版), 2020, 43(03):17-23
[2] Aussel D, Dutta J. Generalized nash equilibrium problem, variational inequality and quasiconvexity[J]. Oper Res Lett, 2008, 36(4):461-464.
[3] Sahu D R, Singh A K. Inertial iterative algorithms for common solution of variational inequality and system of variational inequalities problems[J]. J Appl Math Comput, 2020, 65(1-2):351-378.
[4] 陈雪,王中宝.求解伪单调变分不等式的自适应加速外梯度算法[J].应用泛函分析学报, 2020, 22(3):97-111.
[5] Fischetti M, Ljubic, L, Monaci M, Sinnl M. A new general-purpose algorithm for mixed-integer bilevel linear programs[J]. Oper Res, 2017, 65(6):1615-1637.
[6] Miao X H, Chen J S. On matrix characterizations for P-property of the linear transformation in second-order cone linear complementarity problems[J]. Linear Algebra Appl, 2021, 613:271-294.
[7] Anh P N, Kim J K, Muu L D. An extragradient algorithm for solving bilevel pseudomonotone variational inequalities[J]. J Global Optim, 2012, 52(3):627-639.
[8] Anh T V, Muu L D, Anh T V. A projection-fixed point method for a class of bilevel variational inequalities with split fixed point constraints[J]. Optimization, 2016, 65(6):1229-1243.
[9] Anh T V. Linesearch methods for bilevel split pseudomonotone variational inequality problems[J]. Numer Algorithms, 2019, 81(3):1067-1087.
[10] Anh T V. A strongly convergent subgradient extragradient-halpern method for solving a class of bilevel pseudomonotone variational inequalities[J]. Vietnam J Math, 2017, 45(3):317-332.
[11] Hieu D V, Moudafi A. Regularization projection method for solving bilevel variational inequality problem[J]. Optim Lett, 2020, 15(1):205-229.
[12] Thong D V, Triet N A, Li X H, et al. Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problems[J]. Numer Algorithms, 2020, 83(3):1123-1143.
[13] Attouch H, Czarnecki M O. Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria[J]. J Differ Equations, 2002, 179(1):278-310.
[14] Attouch H, Goudou X, Redont P. The heavy ball with friction method. I. The continuous dynamical system:Global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system[J]. Commun Contemp Math, 2000, 2(1):1-34.
[15] Liu L, Tan B, Sun Y C. On the resolution of variational inequality problems with a doublehierarchical structure[J]. J Nonlinear Convex A, 2020, 21(2):377-386.
[16] Tan B, Liu L Y, Qin X Y. Self adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems[J]. Jpn J Ind Appl Math, 2021.
[17] Zhong Bao Wang, Zhang-you Chen, Yi-bin Xiao, Cong Zhang. A new projection-type method for solving multivalued mixed variational inequalities without monotonicity[J]. Appl Anal, 2020, 99(9):1453-1466.
[18] 杨博,夏福全.广义混合变分不等式问题的投影算法[J].四川师范大学学报(自然科学版), 2018, 41(04):471-477.
[19] Anh P N, Thang T V, Thach H T C. Halpern projection methods for solving pseudomonotone multivalued variational inequalities in Hilbert spaces[J]. Numer Algorithms, 2020, 87(1):335-263.
[20] Dong Q L, Cho Y J, Zhong L L, Rassias Th M. Inertial projection and contraction algorithms for variational inequalities[J]. J Global Optim, 2018, 70(3):687-704.
[21] Goebel K, Reich S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings[M]. Marcel Dekker, New York, 1984.
[22] Zarantonello E H. Projections on Convex Sets in Hilbert Space and Spectral Theory. In:Zarantonello, E.H.(ed) Contributions to Nonlinear Functional Analysis[J]. Academic Press, New York, 1971.
[23] Mashreghi J, Nasri M. Forcing strong convergence of Korpelevich's method in Banach spaces with its applications in game theory[J]. Nonlinear Anal-Theor, 2010, 72(3-4):2086-2099.
[24] Saejung S, Yotkaew P. Approximation of zeros of inverse strongly monotone operators in Banach spaces[J]. Nonlinear Anal-Theor, 2012, 75(2):742-750.
[25] Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. Springer, Berlin, 2003.
[1] 翟娜, 李亚娟, 邓重阳. 迭代逼近坐标[J]. 数值计算与计算机应用, 2022, 43(1): 112-124.
[2] 牛善洲, 刘宏, 朱赟, 喻高航, 马建华. 基于广义惩罚加权最小二乘的低剂量CT重建方法[J]. 数值计算与计算机应用, 2021, 42(3): 289-302.
[3] 杨庆之, 黄鹏斐, 刘亚君. 解一类非线性特征值问题的数值算例[J]. 数值计算与计算机应用, 2019, 40(2): 130-142.
[4] 申远, 李瑶. 一种求解带有冲击噪声的图像去模糊去噪问题的变步长分裂Bregman算法[J]. 数值计算与计算机应用, 2018, 39(1): 44-59.
[5] 刘群锋, 陈景周, 徐钦桂. 多水平直接搜索全局优化方法[J]. 数值计算与计算机应用, 2017, 38(4): 297-311.
[6] 申远, 刘珊珊. 一种新的自适应步长梯度投影法[J]. 数值计算与计算机应用, 2016, 37(4): 307-314.
[7] 王丽平, 吴亚飞. 联合稀疏独立法则及其在疾病分类中的应用[J]. 数值计算与计算机应用, 2016, 37(3): 179-185.
[8] 庄杰鹏, 彭拯. —种修正的Cauchy-Barzilai-Borwein算法[J]. 数值计算与计算机应用, 2016, 37(3): 186-198.
[9] 张艳君, 赵金玲, 徐尔. 求解多集分裂可行问题的一种共轭梯度法[J]. 数值计算与计算机应用, 2013, 34(4): 249-256.
[10] 陈龙卫, 倪勤, 张欣. 强迫下降的三项共扼梯度法[J]. 数值计算与计算机应用, 2012, 33(3): 181-188.
[11] 张春敏,  杨月婷. 两种混合共轭梯度法的全局收敛性[J]. 数值计算与计算机应用, 2012, 33(2): 92-98.
[12] 徐海文. 一类单调非线性变分不等式的前向加速收缩算法[J]. 数值计算与计算机应用, 2011, 32(4): 259-266.
[13] 马明, 刘华. 基于最小平方误差逼近的线性阀体的设计[J]. 数值计算与计算机应用, 2010, 31(3): 214-222.
[14] 胡平, 倪勤. 一个松弛非单调线搜索法[J]. 数值计算与计算机应用, 2010, 31(3): 191-199.
[15] 刘金魁, 王开荣, 杜祥林, 贾松芳. 一种新的非线性共轭梯度法及收敛性[J]. 数值计算与计算机应用, 2009, 30(4): 247-254.
阅读次数
全文


摘要