• 论文 •

### 一类关于非奇异$H$-矩阵判定的细分迭代新准则

1. 吉首大学数学与统计学院, 吉首 416000
• 收稿日期:2020-12-02 发布日期:2022-06-10
• 通讯作者: 庹清,Email:tuoqing\_001@163.com.
• 基金资助:
国家自然科学基金(11461027),湖南省教育厅科学研究项目(21C0365),吉首大学校级科研项目(Jdy21001)资助.

Shi Hui, Tuo Qing, Wu Le, Chen Xi. A CLASS OF SUBDIVIDING AND ITERATIVE NEW CRITERIA FOR NONSINGULAR H-MATRICES DETERMINATIONS[J]. Journal on Numerica Methods and Computer Applications, 2022, 43(2): 176-187.

### A CLASS OF SUBDIVIDING AND ITERATIVE NEW CRITERIA FOR NONSINGULAR H-MATRICES DETERMINATIONS

Shi Hui, Tuo Qing, Wu Le, Chen Xi

1. College of Mathematics and Statistics, Jishou University, Jishou 416000, China
• Received:2020-12-02 Published:2022-06-10

In this paper, we mainly study the criteria of nonsingular H-matrices based on the relation of α-chain diagonally dominant matrices. By using the properties of nonsingular H-matrices and the relationship between them and α-chain diagonally dominant matrices, we present a class of subdividing and iterative new criteria for nonsingular H-matrices determinations is given by subdividing the interval of the set of non-occupied rows of the matrix and constructing new recurrence coefficients. Some recent results are improved. Numerical examples for the effectiveness of the criteria are presented.

MR(2010)主题分类:

()
 [1] 周伟伟,徐仲,陆全,等.非奇H-矩阵细分迭代判定准则[J].数值计算与计算机应用, 2011, 32(4):293-300.[2] 山瑞平,陆全,徐仲,等.非奇异H矩阵的一组细分迭代判定条件[J].工程数学学报, 2014, 31(06):857-864.[3] 李敏,桑海风,刘畔畔,等.非奇异H-矩阵的细分迭代判定[J].吉林大学学报(理学版), 2017, 55(05):1101-1106.[4] 杨健,徐仲,陆全,等.广义严格α-链对角占优矩阵新的判定准则[J].工程数学学报, 2014, 31(02):267-273.[5] 黄廷祝.非奇异$H$-矩阵的简捷判据[J].计算数学, 1993, 15(3):318-328.[6] Sun Y X. An improvement on a theorem by Ostrowski and its applications[J]. Northeastern Mathematica Journal, 1991, 7(4):497-502.[7] Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences[M]. SIAM Press, Philadelphia, 1994.[8] 干泰彬,黄廷祝.非奇异$H$-矩阵的实用充分条件[J].计算数学, 2004, 26(1):109-116.[9] 庹清,朱砾,刘建州.一类非奇异$H$-矩阵判定的新条件[J].计算数学, 2008, 30(02):177-182.[10] 刘长太.非奇异H矩阵迭代式充分条件[J].计算数学, 2017, 39(03):328-336.
 [1] 王峰, 孙德淑. H-张量的判定及其应用[J]. 数值计算与计算机应用, 2015, 36(3): 215-224. [2] 张晋芳, 杨晋, 任艳萍. 非奇异H-矩阵的新判定[J]. 数值计算与计算机应用, 2013, 34(3): 161-166. [3] 周伟伟, 徐仲, 陆全, 尹军茹. 非奇H-矩阵细分迭代判定准则[J]. 数值计算与计算机应用, 2011, 32(4): 293-300. [4] 雷小娜, 徐仲, 陆全, 安晓红. 广义严格对角占优矩阵的一组新判据[J]. 数值计算与计算机应用, 2011, 32(1): 49-56. [5] 段复建,张可村. 不可约M-矩阵最小特征值的新算法[J]. 数值计算与计算机应用, 2006, 27(2): 139-144.