• 论文 • 上一篇    下一篇

一类关于非奇异$H$-矩阵判定的细分迭代新准则

石慧, 庹清, 吴乐, 陈茜   

  1. 吉首大学数学与统计学院, 吉首 416000
  • 收稿日期:2020-12-02 发布日期:2022-06-10
  • 通讯作者: 庹清,Email:tuoqing\_001@163.com.
  • 基金资助:
    国家自然科学基金(11461027),湖南省教育厅科学研究项目(21C0365),吉首大学校级科研项目(Jdy21001)资助.

石慧, 庹清, 吴乐, 陈茜. 一类关于非奇异$H$-矩阵判定的细分迭代新准则[J]. 数值计算与计算机应用, 2022, 43(2): 176-187.

Shi Hui, Tuo Qing, Wu Le, Chen Xi. A CLASS OF SUBDIVIDING AND ITERATIVE NEW CRITERIA FOR NONSINGULAR H-MATRICES DETERMINATIONS[J]. Journal on Numerica Methods and Computer Applications, 2022, 43(2): 176-187.

A CLASS OF SUBDIVIDING AND ITERATIVE NEW CRITERIA FOR NONSINGULAR H-MATRICES DETERMINATIONS

Shi Hui, Tuo Qing, Wu Le, Chen Xi   

  1. College of Mathematics and Statistics, Jishou University, Jishou 416000, China
  • Received:2020-12-02 Published:2022-06-10
本文主要研究了基于$\alpha$-链对角占优矩阵关系的非奇异$H$-矩阵判定条件问题.利用非奇异$H$-矩阵的性质,以及$\alpha$-链对角占优矩阵与其的关系,通过对矩阵非占优行集合区间进行细分和构造新递进系数的方法,给出了一类关于非奇异$H$-矩阵判定的细分迭代新准则,改进了近期的一些结果,并用数值算例说明了该判定准则的有效性.
In this paper, we mainly study the criteria of nonsingular H-matrices based on the relation of α-chain diagonally dominant matrices. By using the properties of nonsingular H-matrices and the relationship between them and α-chain diagonally dominant matrices, we present a class of subdividing and iterative new criteria for nonsingular H-matrices determinations is given by subdividing the interval of the set of non-occupied rows of the matrix and constructing new recurrence coefficients. Some recent results are improved. Numerical examples for the effectiveness of the criteria are presented.

MR(2010)主题分类: 

()
[1] 周伟伟,徐仲,陆全,等.非奇H-矩阵细分迭代判定准则[J].数值计算与计算机应用, 2011, 32(4):293-300.
[2] 山瑞平,陆全,徐仲,等.非奇异H矩阵的一组细分迭代判定条件[J].工程数学学报, 2014, 31(06):857-864.
[3] 李敏,桑海风,刘畔畔,等.非奇异H-矩阵的细分迭代判定[J].吉林大学学报(理学版), 2017, 55(05):1101-1106.
[4] 杨健,徐仲,陆全,等.广义严格α-链对角占优矩阵新的判定准则[J].工程数学学报, 2014, 31(02):267-273.
[5] 黄廷祝.非奇异$H$-矩阵的简捷判据[J].计算数学, 1993, 15(3):318-328.
[6] Sun Y X. An improvement on a theorem by Ostrowski and its applications[J]. Northeastern Mathematica Journal, 1991, 7(4):497-502.
[7] Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences[M]. SIAM Press, Philadelphia, 1994.
[8] 干泰彬,黄廷祝.非奇异$H$-矩阵的实用充分条件[J].计算数学, 2004, 26(1):109-116.
[9] 庹清,朱砾,刘建州.一类非奇异$H$-矩阵判定的新条件[J].计算数学, 2008, 30(02):177-182.
[10] 刘长太.非奇异H矩阵迭代式充分条件[J].计算数学, 2017, 39(03):328-336.
[1] 王峰, 孙德淑. H-张量的判定及其应用[J]. 数值计算与计算机应用, 2015, 36(3): 215-224.
[2] 张晋芳, 杨晋, 任艳萍. 非奇异H-矩阵的新判定[J]. 数值计算与计算机应用, 2013, 34(3): 161-166.
[3] 周伟伟, 徐仲, 陆全, 尹军茹. 非奇H-矩阵细分迭代判定准则[J]. 数值计算与计算机应用, 2011, 32(4): 293-300.
[4] 雷小娜, 徐仲, 陆全, 安晓红. 广义严格对角占优矩阵的一组新判据[J]. 数值计算与计算机应用, 2011, 32(1): 49-56.
[5] 段复建,张可村. 不可约M-矩阵最小特征值的新算法[J]. 数值计算与计算机应用, 2006, 27(2): 139-144.
阅读次数
全文


摘要