洪旗, 苏帅
洪旗, 苏帅. 任意四边形网格上扩散问题的一个稳定九点格式[J]. 数值计算与计算机应用, 2019, 40(1): 51-67.
Hong Qi, Su Shuai. A STABLE NINE-POINT SCHEME FOR DIFFUSION PROBLEMS ON ARBITRARY QUADRILATERAL MESHES[J]. Journal of Numerical Methods and Computer Applications, 2019, 40(1): 51-67.
Hong Qi, Su Shuai
MR(2010)主题分类:
分享此文:
[1] Morel J, Roberts R, Shashkov M. A local support-operators diffusion discretization scheme for quadrilateral r-z meshes[J]. J. Comput. Phys., 1998, 144(1):17-51.[2] Shashkov M, Steinberg S, Support-operator finite-difference algorithms for general elliptic problems[J]. J. Comput. Phys., 1995, 118(1):131-151.[3] Aavatsmark I. An introduction to multipoint flux approximations for quadrilateral grids[J]. Comput. Geosci., 2002, 6(3):405-432.[4] Aavatsmark I, Barkve T, Boe O, Mannseth T. Discretization on unstructured grids. Part I:Derivation of the methods for inhomogeneous, anisotropic media[J] SIAM J. Sci. Comput., 1998, 19(5):1700-1716.[5] Domelevo K, Omnes P. A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids[J]. ESAIM:M2AN, 2005, 39(6):1203-1249.[6] Hermeline F. A finite volume method for the approximation of diffusion operators on distorted meshes[J]. J. Comput. Phys., 2000, 160(2):481-499.[7] Li D, Shui H, Tang M. On the finite difference scheme of two-dimensional parabolic equation in a non-rectangular mesh[J]. J. Numer. Methods Comput. Appl., 1980, 4(1):217-224.[8] Lipnikov K, Shashkov M, Svyatskiy D. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes[J]. J. Comput. Phys., 2007, 227(1):492-512.[9] Coudière Y, Vila J, Villedieu P. Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem[J]. Math. Model. Numer. Anal., 1999, 33(3):493-516.[10] Gao Z, Wu J. A linearity-preserving cell-centered scheme for the heterogeneous and anisotropic diffusion equations on general meshes[J] Int. J. Numer. Meth. Fluids, 2011, 67(12):2157-2183.[11] Sheng Z, Yuan G. A nine point scheme for the approximation of diffusion operators on distored quadrilateral meshes[J]. SIAM J. Sci. Comput., 2008, 30(3):1341-1361.[12] Hong Q, Wu J. Coercivity results of a modified Q1-finite volume element scheme for anisotropic diffusion problems[J]. Adv. Comput. Math., 2018, 44(3):897-922.[13] Pei W. The construction of simulation algorithms for laser fusion[J]. Commun. Comput. Phys., 2007, 2(2):255-270.[14] Ding L, Wu J, Yang Z, Dai Z. Simulation of Z-pinch implosion using MARED code[J]. High Power Laser Particle Beans, 2008, 20(2):212-218.[15] Wu J, Dai Z, Gao Z, Yuan G. Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes[J]. J. Comput. Phys., 2010, 229(9):3382-3401.[16] Zel'dovich Y, Raizer Y. Benchmark on discretization schemes for anisotropic diffusion problems on general grids[M]. New York:Academic Press, 1967. |
[1] | 袁光伟. 扩散方程九点格式的保正性与极值性[J]. 数值计算与计算机应用, 2021, 42(2): 134-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||