• 论文 • 上一篇    下一篇

基于勒让德多项式逼近的4级4阶隐式Runge-Kutta方法

刘翠翠, 张瑞平   

  1. 西安理工大学理学院, 西安 710054
  • 收稿日期:2014-04-28 出版日期:2015-03-15 发布日期:2015-03-05
  • 基金资助:

    陕西省教育厅科学研究计划(11JK0524)资助项目.

刘翠翠, 张瑞平. 基于勒让德多项式逼近的4级4阶隐式Runge-Kutta方法[J]. 数值计算与计算机应用, 2015, 36(1): 22-30.

Liu Cuicui, Zhang Ruiping. A FOUR-STAGE FOURTH-ORDER IMPLICIT RUNGE-KUTTA METHOD BASED ON LEGENDRE POLYNOMIALS APPROXIMATION[J]. Journal of Numerical Methods and Computer Applications, 2015, 36(1): 22-30.

A FOUR-STAGE FOURTH-ORDER IMPLICIT RUNGE-KUTTA METHOD BASED ON LEGENDRE POLYNOMIALS APPROXIMATION

Liu Cuicui, Zhang Ruiping   

  1. Schools of Sciences, Xi'an University of Technology, Xi'an 710054, China
  • Received:2014-04-28 Online:2015-03-15 Published:2015-03-05
利用勒让德多项式逼近理论和高斯-洛巴托求积公式, 构造了一个4级4阶的隐式Runge-Kutta方法.理论分析发现, 该算法具有良好的稳定性-是A(α)稳定的且α接近于90°, 是刚性稳定的且D值接近于0, 几乎是A稳定的和L稳定的, 并能有效求解刚性常微分方程初值问题, 数值算例显示了该算法的有效性.
By using the Legendre polynomials approximation theory and Gauss-Lobatto quadrature formula, a four-stage fourth-order implicit Runge-Kutta method is presented. It is showed that the new algorithm has good stability properties in theoretical analysis, A(α)-stable and α is close to ninety degrees, and stiff stable and D is close to zero. It is almost A-stable and almost L-stable. The new method can solve stiff ordinary differential equations effectively. The numerical examples illustrate its effectiveness.

MR(2010)主题分类: 

()
[1] Goeken D, Johnson O. Fifth-order Runge-Kutta with higher order derivative approximations[J]. Electronic Journal of Differential Equations, 1999, 2: 1-9.

[2] Podisuk M. Open formula of Runge-Kutta method for solving autonomous ordinary differential equation[J]. Applied Mathematics and Computation. 2006, 181(1): 536-542.

[3] Ramos H, Vigo-Aguiar J. A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations[J]. Journal of computational and applied mathematics, 2007, 204(1): 124-136.

[4] Kulikov G Yu, Shindin S K. Adaptive nested implicit Runge-Kutta formulas of Gauss type[J]. Applied Numerical Mathematics, 2009, 59: 707-722.

[5] Wu Xinyuan. A class of Runge-Kutta of order three and four with reduced evaluations of function[ J]. Applied Mathematics and Computation. 2003, 146: 417-432.

[6] Niegemann J, Diehl R, Busch K. Efficient low-storage Runge-Kutta schemes with optimized stability regions[J]. Journal of Computational Physics, 2012, 231(2): 364-372.

[7] Najafi-Yazdi A, Mongeau L. A low-dispersion and low-dissipation implicit Runge-Kutta scheme[J]. Journal of computational physics, 2013, 233: 315-323.

[8] Kalogiratou Z. Diagonally implicit trigonometrically fitted symplectic Runge-Kutta methods[J]. Applied Mathematics and Computation, 2013, 219: 7406-7421.

[9] 《现代应用数学手册》编委会. 现代应用数学手册-计算与数值分析 卷[M]. 北京: 清华大学出版社, 2005.

[10] 李寿佛. 刚性常微分方程及刚性泛函微分方程数值分析[M]. 湖南: 湘潭 大学出版社, 2010.
[1] 何鼎, 胡鹏. 求解随机常微分方程的平均单支$\theta-$方法[J]. 数值计算与计算机应用, 2022, 43(1): 49-60.
[2] 刘新龙, 杨晓忠. 时间分数阶四阶扩散方程的显-隐和隐-显差分格式[J]. 数值计算与计算机应用, 2020, 41(3): 216-231.
[3] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的三阶数值格式[J]. 数值计算与计算机应用, 2020, 41(3): 201-215.
[4] 关文绘, 曹学年. Riesz回火分数阶平流-扩散方程的隐式中点方法[J]. 数值计算与计算机应用, 2020, 41(1): 42-57.
[5] 洪旗, 苏帅. 任意四边形网格上扩散问题的一个稳定九点格式[J]. 数值计算与计算机应用, 2019, 40(1): 51-67.
[6] 丛玉豪, 赵欢欢, 张艳. 中立型时滞微分系统多步龙格-库塔方法的时滞相关稳定性[J]. 数值计算与计算机应用, 2018, 39(4): 310-320.
[7] 毛文亭, 张维, 王文强. 一类带乘性噪声随机分数阶微分方程数值方法的弱收敛性与弱稳定性[J]. 数值计算与计算机应用, 2018, 39(3): 161-171.
[8] 王文强, 孙晓莉. 一类随机分数阶微分方程隐式Euler方法的弱收敛性与弱稳定性[J]. 数值计算与计算机应用, 2014, 35(2): 153-162.
[9] 吴立飞, 杨晓忠, 张帆. 非线性Leland方程的一种并行本性差分方法[J]. 数值计算与计算机应用, 2014, 35(1): 69-80.
[10] 张启峰, 张诚坚, 邓定文. 求解非线性时滞双曲型偏微分方程的紧致差分方法及Richardson外推算法[J]. 数值计算与计算机应用, 2013, 34(3): 167-176.
[11] 廖书, 杨炜明, 陈相臻. 霍乱动力学模型中的基本再生数的计算和稳定性分析[J]. 数值计算与计算机应用, 2012, 33(3): 189-197.
[12] 苏凯, 王锦红, 张宏伟, 王晚生. 显式和对角隐式Rung-Kutta方法求解中立型泛函微分方程的非线性稳定性[J]. 数值计算与计算机应用, 2011, 32(1): 8-22.
[13] 胡鹏, 黄乘明. 非线性延迟积分微分方程线性多步法的渐近稳定性[J]. 数值计算与计算机应用, 2010, 31(2): 116-122.
[14] 张在斌, 孙志忠. 一类非线性延迟抛物偏微分方程的Crank-Nicolson型差分格式[J]. 数值计算与计算机应用, 2010, 31(2): 131-140.
[15] 余越昕, 文立平. 非线性中立型延迟积分微分方程线性Θ-方法的渐近稳定性[J]. 数值计算与计算机应用, 2009, 30(4): 241-246.
阅读次数
全文


摘要