• 论文 • 上一篇
席钧1,2, 曹建文3
席钧, 曹建文. 美式期权定价的分数阶偏微分方程组及其数值离散方法[J]. 数值计算与计算机应用, 2014, 35(3): 229-240.
Xi Jun, Cao Jianwen. FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS AND NUMERICAL DISCRETIZATION METHOD FOR PRICING AMERICAN OPTIONS[J]. Journal of Numerical Methods and Computer Applications, 2014, 35(3): 229-240.
Xi Jun1,2, Cao Jianwen3
MR(2010)主题分类:
分享此文:
[1] Bachelier L. Théorie de la spéculation[M]. Gauthier-Villars, 1900.[2] Merton R C, Samuelson P A. Continuous-time finance[M]. 1992.[3] Schoutens W. Lévy processes in finance: pricing financial derivatives[M]. 2003.[4] Mandelbrot B B, Van Ness J W. Fractional Brownian motions, fractional noises and applications[J]. SIAM review, 1968, 10(4): 422-437.[5] Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of financial economics, 1976, 3(1): 125-144.[6] Kou S G. A jump-diffusion model for option pricing[J]. Management science, 2002, 48(8): 1086-1101.[7] Mandelbrot B B. The variation of certain speculative prices[M]. Springer New York, 1997.[8] Geman H. Pure jump Lévy processes for asset price modelling[J]. Journal of Banking and Finance, 2002, 26(7): 1297-1316.[9] Carr P, Geman H, Madan D B, et al. The Fine Structure of Asset Returns: An Empirical Investigation[J]. The Journal of Business, 2002, 75(2): 305-333.[10] Press S J. A compound events model for security prices[J]. Journal of business, 1967: 317-335.[11] Koponen I. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process[J]. Physical Review E, 1995, 52(1): 1197.[12] Boyarchenko S I, Levendorskii S Z. Non-Gaussian Merton-Black-Scholes Theory[M]. Singapore: World Scientific, 2002.[13] 严加安. 金融数学: 历史, 现状和展望[J]. 2000.[14] 姜礼尚. 期权定价的数学模型和方法[M]. 高等教育出版社, 2008.[15] Cartea A, del-Castillo-Negrete D. Fractional diffusion models of option prices in markets with jumps[J]. Physica A: Statistical Mechanics and its Applications, 2007, 374(2): 749-763.[16] 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解[J]. 2011.[17] 辛宝贵, 陈通, 刘艳芹. 一类分数阶混沌金融系统的复杂性演化研究[J]. 物理学报, 2011, 60(4): 797-802.[18] Cartea A. Dynamic hedging of financial instruments when the underlying follows a non-Gaussian process[R]. Working paper, Birkbeck College, University of London, 2005.[19] Scalas E, Gorenflo R, Mainardi F. Fractional calculus and continuous-time finance[J]. Physica A: Statistical Mechanics and its Applications, 2000, 284(1): 376-384.[20] F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Fractional calculus and continuous-time finance II: the waiting-time distribution[J]. Physica A, 2000, 287: 469-481.[21] d'Halluin Y, Forsyth P A, Labahn G. A penalty method for American options with jump diffusion processes[J]. Numerische Mathematik, 2004, 97(2): 321-352.[22] Ikonen S, Toivanen J. Operator splitting methods for American option pricing[J]. Applied mathematics letters, 2004, 17(7): 809-814.[23] Lord R, Fang F, Bervoets F, et al. A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes[J]. SIAM Journal on Scientific Computing, 2008, 30(4): 1678-1705.[24] Marom O, Momoniat E. A comparison of numerical solutions of fractional diffusion models in finance[J]. Nonlinear Analysis: Real World Applications, 2009, 10(6): 3435-3442.[25] Meerschaert M M, Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations[J]. Applied Numerical Mathematics, 2006, 56(1): 80-90.[26] Tadjeran C, Meerschaert M M, Scheffler H P. A second-order accurate numerical approximation for the fractional diffusion equation[J]. Journal of Computational Physics, 2006, 213(1): 205-213.[27] Podlubny I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198 of[J]. Mathematics in Science and Engineering, 1999.[28] Merton R C. Theory of rational option pricing[M]. 1971.[29] Salmi S, Toivanen J. An iterative method for pricing American options under jump-diffusion models[J]. Applied Numerical Mathematics, 2011, 61(7): 821-831.[30] Carr P, Wu L. The finite moment log stable process and option pricing[J]. The Journal of Finance, 2003, 58(2): 753-778. |
[1] | 段班祥, 朱小平, 张爱萍. 解线性互补问题的并行交替迭代算法[J]. 数值计算与计算机应用, 2011, 32(3): 183-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||