• 论文 • 上一篇    下一篇

多矩阵变量线性矩阵方程的广义自反解的迭代算法

王娇, 张凯院, 李书连   

  1. 西北工业大学应用数学系, 西安 710072
  • 收稿日期:2011-11-17 出版日期:2013-03-15 发布日期:2013-03-12
  • 基金资助:

    国家自然科学基金(11071196).

王娇, 张凯院, 李书连. 多矩阵变量线性矩阵方程的广义自反解的迭代算法[J]. 数值计算与计算机应用, 2013, 34(1): 9-19.

Wang Jiao, Zhang Kaiyuan, Li Shulian. AN ITERATIVE ALGORITHM FOR THE GENERALIZED REFLEXIVE SOLUTION OF THE MULTI-MATRIX-VARIABLE LINEAR MATRIX EQUATION[J]. Journal of Numerical Methods and Computer Applications, 2013, 34(1): 9-19.

AN ITERATIVE ALGORITHM FOR THE GENERALIZED REFLEXIVE SOLUTION OF THE MULTI-MATRIX-VARIABLE LINEAR MATRIX EQUATION

Wang Jiao, Zhang Kaiyuan, Li Shulian   

  1. Dept. of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2011-11-17 Online:2013-03-15 Published:2013-03-12
基于求线性矩阵方程约束解的修正共轭梯度法的思想方法, 通过修改某些矩阵的结构,建立了求特殊类型的多矩阵变量线性矩阵方程的广义自反解的迭代算法, 证明了迭代算法的收敛性, 解决了给定矩阵在该矩阵方程的广义自反解集合中的最佳逼近计算问题.当矩阵方程相容时, 该算法可以在有限步计算后得到其一组广义自反解; 选取特殊的初始矩阵, 能够求得其极小范数广义自反解. 数值算例表明, 迭代算法是有效的.
Based on the method of the modified conjugate gradient to the linear matrix equation over constrained matrices, and by modifying the construction of some matrices, an iterative algorithm is presented to find the generalized reflexive solution of the matrix equation which is a special type with several matrix variables. The convergence of the iterative algorithm is proved. And the problem of the optimal approximation to the given matrix is solved in the generalized reflexive solution set of this matrix equation. When this matrix equation is consistent, its generalized reflexive solution can be obtained within finite iterative steps. And its least-norm generalized reflexive solution can be got by choosing the special initial matrices. The numerical example shows that the iterative algorithm is quite efficient.

MR(2010)主题分类: 

()
[1] Braden H W. The equationsATX+XTA=B[J]. SIAM. J. Matrix Anal. & Appl., 1998, 295-302.

[2] Fujioka H, Hara S. State covariance assignment problem with measurement noise: a unified approach based on a symmetric matrix equation[J]. Linear Algebra Appl., 1994, 203/204: 579-605.

[3] 袁永新, 戴华. 矩阵方程ATXB+BTXTA=D的极小范数最小二乘解[J]. 高等学校计算数学学报, 2005, 27(3): 232-238.

[4] Dehghan Mehdi, Hajarian Masoud. Two algorithms for finding the Hermitian reflexive and skew- Hermitian solutions of Sylvester matrix equations[J]. Appl. Math. Lett, 2011, 24: 444-449.

[5] Wang Xiang, Wu Wuhua. A finite Iterative algorithm for Solving the generalized (P, Q)-reflexive solution of the linear systems of matrix equations[J]. Mathematical and Computer Modelling, 2011, 54: 2117-2131.

[6] 袁飞, 张凯院. 矩阵方程AXB+CXTD=F的自反最小二乘解的迭代算法[J]. 数值计算与计算机应用, 2009, 30(3): 195-201.

[7] 郑凤芹, 张凯院. 求多变量线性矩阵方程组自反解的迭代算法[J]. 数值计算与计算机应用, 2010, 31(1): 39-54.

[8] 刘晓敏, 张凯院. 双变量LMEs一种异类约束最小二乘解的MCG算法[J].应用数学学报, 2011, 34(5): 938-948.

[9] 田小红, 张凯院. 求线性矩阵方程双对称最小二乘解的变形共轭梯度法[J]. 工程数学学报, 2010, 27(5): 827-832.

[10] 张凯院, 徐仲. 数值代数(第2版修订本)[M]. 北京: 科学出版社,2010, 25-27, 198-243.

[11] 张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2006,105-113.
[1] 张凯院, 宁倩芝. 实矩阵两类广义逆的迭代算法[J]. 数值计算与计算机应用, 2015, 36(2): 81-90.
[2] 张骁, 陆全, 徐仲, 崔静静. 非奇H-矩阵的一组迭代判别法[J]. 数值计算与计算机应用, 2015, 36(1): 59-68.
[3] 蔡耀雄, 任全伟, 庄清渠. 一类四阶微积分方程的四阶差分格式[J]. 数值计算与计算机应用, 2014, 35(1): 59-68.
[4] 张凯院, 宋卫红, 王娇. 一类广义Riccati矩阵方程对称解的双迭代算法[J]. 数值计算与计算机应用, 2013, 34(4): 286-294.
[5] 石玲玲, 徐仲, 陆全, 周伟伟. 广义Nekrasov矩阵的新迭代判别法[J]. 数值计算与计算机应用, 2013, 34(2): 117-122.
[6] 顾乐民. 余弦函数型最佳一致逼近多项式[J]. 数值计算与计算机应用, 2012, 33(3): 173-180.
[7] 武见, 张凯院, 刘晓敏. 求多变量线性矩阵方程组自反解的迭代算法[J]. 数值计算与计算机应用, 2011, 32(2): 105-116.
[8] 王江涛, 张忠志, 谢冬秀, 雷秀仁. 埃尔米特自反矩阵的广义逆特征值问题与最佳逼近问题[J]. 数值计算与计算机应用, 2010, 31(3): 232-240.
[9] 郑凤芹, 张凯院. 求多变量线性矩阵方程组自反解的迭代算法[J]. 数值计算与计算机应用, 2010, 31(1): 39-54.
[10] 袁飞, 张凯院. 矩阵方程AXB + CXTD=F自反最小二乘解的迭代算法[J]. 数值计算与计算机应用, 2009, 30(3): 195-201.
[11] 陈世军, 张凯院. 一类Lyapunov 型矩阵方程组的中心对称解及其最佳逼近[J]. 数值计算与计算机应用, 2009, 30(2): 119-129.
[12] 尚丽娜,张凯院,陈梅枝. 求矩阵方程AXB=C的双对称最小二乘解的迭代算法[J]. 数值计算与计算机应用, 2008, 29(2): 126-135.
[13] 李伯忍,胡锡炎,刘学杰. 谱约束下反对称正交反对称矩阵束的最佳逼近[J]. 数值计算与计算机应用, 2007, 28(4): 282-289.
[14] 雷渊,廖安平. 线性流形上一类矩阵方程的最佳逼近问题[J]. 数值计算与计算机应用, 2007, 28(1): 1-10.
[15] 龚丽莎,胡锡炎,张磊. 主子阵约束下矩阵方程AX=B的对称最小二乘解[J]. 数值计算与计算机应用, 2006, 27(2): 154-160.
阅读次数
全文


摘要