• 论文 • 上一篇    下一篇

求解大型Stein方程的块Krylov子空间方法

黄飞虎, 汪晓虹   

  1. 南京航空航天大学数学系, 南京 211106
  • 收稿日期:2012-03-15 出版日期:2013-03-15 发布日期:2013-03-12

黄飞虎, 汪晓虹. 求解大型Stein方程的块Krylov子空间方法[J]. 数值计算与计算机应用, 2013, 34(1): 47-58.

Huang Feihu, Wang Xiaohong. BLOCK KRYLOV SUBSPACE METHODS FOR LARGE STEIN EQUATIONS[J]. Journal of Numerical Methods and Computer Applications, 2013, 34(1): 47-58.

BLOCK KRYLOV SUBSPACE METHODS FOR LARGE STEIN EQUATIONS

Huang Feihu, Wang Xiaohong   

  1. Dept. of Math, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2012-03-15 Online:2013-03-15 Published:2013-03-12
本文研究利用块Krylov子空间方法对大型Stein方程降阶求解, 分别基于块Arnoldi方法与非对称块Lanczos方法,提出了块Arnoldi Stein方法与非对称块Lanczos Stein方法.数值实验表明提出的方法有效.
This paper studies the block Krylov subspace methods for reduced order to solve large Stein equations, and propose the block Arnoldi Stein method and the nonsymmetric block Lanczos Stein method, which are based on the block Arnoldi method and the nonsymmetric block Lanczos method, respectively. Numerical experiments show the effectiveness of proposed methods.

MR(2010)主题分类: 

()
[1] Datta B N, Datta K. Theoretical and computational aspects of some linear algebra problems in control theory, in: C.I. Byrnes, A. Lindquist (Eds.),Computational and Combinatorial Methods in Systems Theory[J]. Elsevier, Amsterdam, 1986, 201-212.
[2] Datta B N. Numerical Methods for Linear Control Systems: Design and Analysis [M], Elsevier Academic Press, Amsterdam, 2004.
[3] Datta B. Numerical Methods for Linear Control Systems Design and Analysis[M]. Elsevier Press, 2003.
[4] Calvetti D, Reichel L. Application of ADI iterative methods to the restoration of noisy images[J]. SIAM J. Matrix Anal. Appl., 1996, 17: 165-186.
[5] Epton M. Methods for the solution of AXB-BXC=E and its applications in the numerical solution of implicit ordinary differential equations[J]. BIT, 1980, 20: 341-345.
[6] Hyland C, Bernstein D. The optimal projection equations for fixed-order dynamic compensation[ J]. IEEE Trans. Contr., 1984, 29: 1034-1037.
[7] Golub G H, Van Loan C F. Matrix Computations, third ed.[M]. Johns Hoplins U.P., Baltimore, 1996.
[8] 戴华. 矩阵论[M]. 北京: 科学出版社, 2001.
[9] Bartels R H and Stewart G W. A solution of the equation AX + XB = C [J]. Commun. ACM, 1972, 15: 820-826.
[10] Golub G H, Nash S, Van Loan C F. A Hessenberg-Shur method for the problem AX+XB=C[J]. IEEE Trans. Automat. Control, 1979, 24: 909-913.
[11] Jbilou K. Low rank approximate solutions to large Sylvester matrix equations[J]. Appl. Math. Comp. 2006, 177: 365-376.
[12] Bao L, Lin Y, Wei Yi. Krylov subspace methods for the generalized Sylvester equation[J]. Appl. Numer. Math., 2006, 175: 557-573.
[13] Bao L, Lin Y, Wei Y. A new projection method for solving large Sylvester equations [J]. Appl. Numer. Math., 2007, 57: 521-532.
[14] El Guennouni A, Jbilou K, Riquet A J. Block Krylov Subspace methods for solving large Sylvester equations[J]. Numer. Algorithms, 2002, 29: 75-96.
[15] Jbilou K, Sadok H, Tinzeft A. Oblique projection methods for linear systems with multiple right-hand sides[J]. Elect. Trans. Numer. Anal., 2005, 20: 119 ? 138.
[16] Penzl T. LYAPACK A MATLAB toolbox for Large Lyapunov and Riccati Equations, Model Reduction Problem, and Linearquadratic Optimal Control Problems [CP]. Available from: .
[1] 汪超, 陈小山. 逆特征值问题的光滑LU分解算法[J]. 数值计算与计算机应用, 2014, 35(4): 289-296.
[2] 孙兰银, 朱春钢. 数据拟合的Toric Bézier曲面方法[J]. 数值计算与计算机应用, 2014, 35(4): 297-304.
[3] 刘皞, 李超. 多右端线性方程组的块种子投影方法[J]. 数值计算与计算机应用, 2014, 35(3): 221-228.
[4] 于春肖, 苑润浩, 穆运峰. 新预处理ILUCG法求解稀疏病态线性方程组[J]. 数值计算与计算机应用, 2014, 35(1): 21-27.
[5] 潘春平. 一种有效的新预条件Gauss-Seidel迭代法[J]. 数值计算与计算机应用, 2011, 32(4): 267-273.
[6] 郑凤芹, 张凯院. 求多变量线性矩阵方程组自反解的迭代算法[J]. 数值计算与计算机应用, 2010, 31(1): 39-54.
[7] 沈海龙, 邵新慧, 张铁, 李长军. H-矩阵方程组的预条件迭代法[J]. 数值计算与计算机应用, 2009, 30(4): 266-276.
[8] 彭小飞,黎稳. Hermite Toeplitz 类系统的预因子[J]. 数值计算与计算机应用, 2008, 29(3): 197-206.
阅读次数
全文


摘要