• 论文 • 上一篇    下一篇

显式和对角隐式Rung-Kutta方法求解中立型泛函微分方程的非线性稳定性

苏凯1,2, 王锦红1, 张宏伟1, 王晚生1   

  1. 1. 长沙理工大学数学与计算科学学院, 长沙 410114;
    2. 湘潭大学数学与计算科学学院, 湖南湘潭 411105
  • 收稿日期:2009-07-12 出版日期:2011-03-15 发布日期:2011-03-08
  • 基金资助:

    国家自然科学基金(11001033, 10871164)、湖南省自然科学基金(10JJ4003)、湖南省教育厅(08C121)资助科研项目及电力青年科技创新资助项目.

苏凯, 王锦红, 张宏伟, 王晚生. 显式和对角隐式Rung-Kutta方法求解中立型泛函微分方程的非线性稳定性[J]. 数值计算与计算机应用, 2011, 32(1): 8-22.

Su Kai, Wang Jinhong, Zhang Hongwei, Wang Wansheng. NONLINEAR STABILITY OF EXPLICIT AND DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS FOR NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS[J]. Journal of Numerical Methods and Computer Applications, 2011, 32(1): 8-22.

NONLINEAR STABILITY OF EXPLICIT AND DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS FOR NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Su Kai1,2, Wang Jinhong1, Zhang Hongwei1, Wang Wansheng1   

  1. 1. School of Mathematics and Computational Science, Changsha University of Science and Technology, Changsha 410114, China;
    2. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
  • Received:2009-07-12 Online:2011-03-15 Published:2011-03-08

本文致力于研究巴拿赫空间中非线性中立型泛函微分方程显式和对角隐式Rung-Kutta方法的稳定性.获得了一些显式和对角隐式Rung-Kutta方法求解非线性中立型泛函微分方程的数值稳定性和条件收缩性结果,数值试验验证了这些结果.

This paper is concerned with the stability of explicit and diagonally implicit Runge-Kutta methods for nonlinear neutral functional differential equations (NFDEs) in Banach spaces. The results on the numerical stability and conditional contractivity of some explicit and diagonally implicit Runge-Kutta methods for nonlinear NFDEs are obtained. Numerical examples are given to confirm the theoretical results.

MR(2010)主题分类: 

()

[1] Bocharov G, Hadeler K P. Structured population models, conservation laws, and delay equations[J]. J. Differential Equations, 2000, 268: 212-237.
[2] Hale Jack. Theory of functional differential equations. New York: springer-verlag, 1977.
[3] 秦元勋, 刘永清, 王联, 郑祖庥. 带有时滞的动力系统的运动稳定性(第2版)[M]. 北京: 科学出版社, 1989.
[4] 匡蛟勋. 泛函微分方程的数值处理[M]. 北京: 科学出版社, 1999.
[5] Bellen A, Zennaro M. Numerical methods for delay differential equations. Oxford University Press, Oxford, 2003.
[6] Bellen A, Guglielmi N, Zennaro M. Numerical stability of nonlinear delay differential equations of neutral type[J]. J. Comput. Appl. Math., 2000, 125(1-2): (2000), 251-263.
[7] 王晚生, 李寿佛. 非线性中立型延迟微分方程稳定性分析[J]. 计算数学, 2004, 26(3): (2004), 303-314.
[8] 王晚生. 非线性中立型泛函微分方程数值分析[D].博士论文, 湘潭大学, 2008.
[9] Wang Wansheng, Li Shoufu. On the one-leg θ-methods for solving nonlinear neutral functional differential equations[J]. Appl. Math. Comput., 2007, 193: 285-301.
[10] Wang Wansheng, Zhang Yuan, Li Shoufu. Nonlinear stability of one-leg methods for delay differential equations of neutral type[J]. Appl. Numer. Math., 2008, 58: 122-130.
[11] Wang Wansheng, Li Shoufu, Su Kai. Nonlinear stability of Runge-Kutta methods for neutral delay differential equations[J]. J. Comput. Appl. Math., 2008, 214: 175-185.
[12] Wang Wansheng, Li Shoufu. Stability analysis of θ-methods for nonlinear neutral functional differential equations[J]. SIAM J. Sci. Comput., 2008, 30: 2181-2205.
[13] 余越昕, 李寿佛. 非线性中立型延迟积分微分方程Runge-Kutta方法的稳定性[J]. 中国科学A辑: 数学, 2006, 36(12): 1343-1354.
[14] Wang Wansheng, Zhang Chengjian. Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space[J]. Numer. Math., 2010, 115: 451-474.
[15] 李寿佛. 刚性微分方程算法理论[M]. 长沙: 湖南科学出版社, 1997.
[16] 文立平. 抽象空间中非线性Volterra泛函微分方程的数值稳定性分析[D]. 博士论文, 湘潭大学, 2005.
[17] Wen Liping, Li Shoufu. Nonlinear stability of linear multistep methods for stiff delay differential equations in Banach spaces[J]. Appl. Math. Comput., 2005, 168: 1031-1044.
[18] Wen Liping, Yu Yuexin, Li Shoufu. Stability of explicit and diagonal implicit Runge-Kutta methods for nonlinear Volterra functional differential equations in Banach spaces[J]. Appl. Math. Comput., 2006, 183: 68-78.
[19] Wen Liping, Wang Wansheng, Yu Yuexin, Li Shoufu. Nonlinear stability and asymptotic stability of implicit Euler method for stiff Volterra functional differential equations in Banach spaces[J]. Appl. Math. Comput., 2008, 198: 582-591.
[20] Wang Wansheng, Wen Liping, Li Shoufu. Nonlinear stability of θ-methods for neutral differential equations in Banach space[J]. Appl. Math. Comput., 2008, 198: 742-753.
[21] Wang Wansheng, Wen Liping, Li Shoufu. Nonlinear stability of explicit and diagonally implicit Runge-Kutta methods for neutral delay differential equations in Banach space[J]. Appl. Math. Comput., 2008, 199: 787-803.
[22] Kolmanovskii V B, Myshkis A. Introduction to the theory and applications of functional differential equations. Kluwer Academy, Dordrecht, 1999.
[23] Gil' M I. Stability of finite and infinite dimensional systems. Kluwer Academic Publishers, Boston, 1998.
[24] Li shoufu. B-theory of Runge-Kutta methods for stiff Volterra functional differential equations[J]. Science in China (Series A), 2003, 46: 662-674.

[1] 范振成. 基于线性多步法的波形松弛方法的线性稳定性[J]. 数值计算与计算机应用, 2020, 41(1): 58-67.
[2] 范振成. 波形松弛方法的绝对稳定与压缩[J]. 数值计算与计算机应用, 2019, 40(3): 230-242.
[3] 祁锐, 何汉林. 非线性延迟积分微分方程单支方法的散逸性[J]. 数值计算与计算机应用, 2011, 32(2): 97-104.
[4] 杨大地, 刘冬兵. 收敛的全部线性多步法基本公式的推导[J]. 数值计算与计算机应用, 2008, 29(3): 176-185.
[5] 肖飞雁, 张诚坚. 一类变时滞微分代数方程单支方法的收敛性[J]. 数值计算与计算机应用, 2008, 29(3): 217-225.
阅读次数
全文


摘要