• 论文 • 上一篇    下一篇

对称正定Toeplitz方程组的多级迭代求解

刘仲云1, 刘成志1, 张育林2   

  1. 1. 长沙理工大学数学与计算科学学院, 长沙 410004;
    2. Minho大学数学系, Braga 4710-057, 葡萄牙
  • 收稿日期:2012-02-01 出版日期:2012-11-15 发布日期:2012-11-12
  • 基金资助:

    湖南省教育厅重点资助项目(09A002 [2009]); 由 FEDER Funds through "Programa Operacional Factores de Competitividade COMPETE" and by Portuguese Funds through FCT within the Project PEst-C/MAT/UI0013/2011 and PTDC/MAT/112273/2009, Portugal资助.

刘仲云, 刘成志, 张育林. 对称正定Toeplitz方程组的多级迭代求解[J]. 计算数学, 2012, 34(4): 397-404.

Liu Zhongyun, Liu Chengzhi, Zhang Yulin. THE MULTISTAGE METHODS FOR SOLVING SYMMETRIC POSITIVE DEFINITE TOEPLITZ SYSTEMS[J]. Mathematica Numerica Sinica, 2012, 34(4): 397-404.

THE MULTISTAGE METHODS FOR SOLVING SYMMETRIC POSITIVE DEFINITE TOEPLITZ SYSTEMS

Liu Zhongyun1, Liu Chengzhi1, Zhang Yulin2   

  1. 1. School of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha 410004, China;
    2. Centro de Matem′atica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
  • Received:2012-02-01 Online:2012-11-15 Published:2012-11-12
二级迭代法亦称内外迭代法. 多级迭代法由多个二级迭代嵌套而成.这些方法特别适合于并行计算,同时可以理解为古典迭代法的延伸或共轭梯度法的预处理子.本文讨论了对称正定Toeplitz线性方程组多级迭代法. 首先,基于Toeplitz矩阵的结构, 我们给出了多级块Jacobi分裂,然后证明了每一级分裂均为P-正则分裂, 并证明了当每一级内迭代次数均为偶数时,迭代法的收敛性. 最后通过数值实例验证了此方法的有效性.
The two-stage iterative methods are also called inner/outer iterative methods. The multistage iteration is nested by several two-stage iterations. Those methods are especially suitable for parallel computation, and can be viewed as extensions of classical iterative methods or as preconditioners for conjugate gradient methods. In this paper, we consider the multistage iterative methods for solving symmetric positive definite Toeplitz systems. Based on the Toeplitz structure, we first construct a multistage block Jacobi splitting, then we prove that the corresponding splitting at each level is P-regular, and show that the resulting method is convergent when the number of iteration at each level is even. At the end, we give some numerical examples to illustrate the effectiveness of our methods.

MR(2010)主题分类: 

()
[1] Bai Zhong-Zhi. The convergence of the two-stage iterative method for hermitian positive definitelinear systems[J]. Appl. Math. Lett. 1998, 11(2): 1-5.

[2] Bai Zhong-Zhi. A class of two-stage iterative methods for systems of weakly nonlinear equations[J].Numer. Algorithms, 1997, 14: 295-319.

[3] Bai Zhong-Zhi, Wang De-Ren. The monotone convergence of the two-stage iterative method forsolving large spares systems of linear equations[J]. Appl. Math. Lett. 1997, 10(1): 113-117.

[4] Bai Zhong-Zhi. Convergence analysis of the two-stage multisplitting method[J]. Calcolo, 1999,36(2): 63-74.

[5] Cao Zhi-Hao. Convergence of nested iterative methods for symmetric P-regular splittings[J]. SIAMJ. Matrix Anal. Appl. 2000, 22(1): 20-32.

[6] Chan Raymond H, Ng Micheal K. Conjugate gradient methods for Toeplitz systems[J]. SIAMRev. 1996, 38: 427-482.

[7] Frommer Andreas, Szyld Daniel B. H-Splittings and two-stage iterative methods[J]. Numer. Math.1992, 63: 345-356.

[8] Golub Gene H, Van Loan Charles F. Matrix Computation. Third Edition. The Johns HopkinsUniversity Press, 1996.

[9] Lanzkron Paul J, Rose Donald J, Szyld Daniel B. Convergence of nested classical iterative methodsfor linear systems[J]. Numer. Math. 1991, 58: 685-702.

[10] Liu Zhongyun, Wu Hebin, Lin Lu. The two-stage iterative methods for symmetric positive definitematrices[J]. Appl. Math. Comput. 2000, 114: 1-12.

[11] Liu Zhongyun, Fassbender Heike. Some properties of generalized K-centrosymmetric Hmatrices[J]. J. Comput. Appl. Math. 2008, 215: 38-48.

[12] Liu Zhongyun, Zhang Yulin, Carla Ferreira, Rahla Rui. On inverse eigenvalue problems for blockToeplitz matrices with Toeplitz blocks[J]. Appl. Math. Comput. 2010, 216(6): 1819-1830.

[13] Ng Michael K. Iterative Methods for Toeplitz Systems, Oxford University Press, Oxford, UK,2004.

[14] 蔡放. 块二级迭代法的近似最优内迭代次数[J]. 计算数学, 2008,30: 89-98.
[1] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[2] 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118.
[3] 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443.
[4] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[5] 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366.
[6] 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412.
[7] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226.
[8] 袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16.
[9] 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109.
[10] 李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117.
[11] 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471.
[12] 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.
[13] 吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236.
[14] 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50.
[15] 李枝枝, 柯艺芬, 储日升, 张怀. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405.
阅读次数
全文


摘要