刘仲云1, 刘成志1, 张育林2
刘仲云, 刘成志, 张育林. 对称正定Toeplitz方程组的多级迭代求解[J]. 计算数学, 2012, 34(4): 397-404.
Liu Zhongyun, Liu Chengzhi, Zhang Yulin. THE MULTISTAGE METHODS FOR SOLVING SYMMETRIC POSITIVE DEFINITE TOEPLITZ SYSTEMS[J]. Mathematica Numerica Sinica, 2012, 34(4): 397-404.
Liu Zhongyun1, Liu Chengzhi1, Zhang Yulin2
MR(2010)主题分类:
分享此文:
[1] Bai Zhong-Zhi. The convergence of the two-stage iterative method for hermitian positive definitelinear systems[J]. Appl. Math. Lett. 1998, 11(2): 1-5.[2] Bai Zhong-Zhi. A class of two-stage iterative methods for systems of weakly nonlinear equations[J].Numer. Algorithms, 1997, 14: 295-319.[3] Bai Zhong-Zhi, Wang De-Ren. The monotone convergence of the two-stage iterative method forsolving large spares systems of linear equations[J]. Appl. Math. Lett. 1997, 10(1): 113-117.[4] Bai Zhong-Zhi. Convergence analysis of the two-stage multisplitting method[J]. Calcolo, 1999,36(2): 63-74.[5] Cao Zhi-Hao. Convergence of nested iterative methods for symmetric P-regular splittings[J]. SIAMJ. Matrix Anal. Appl. 2000, 22(1): 20-32.[6] Chan Raymond H, Ng Micheal K. Conjugate gradient methods for Toeplitz systems[J]. SIAMRev. 1996, 38: 427-482.[7] Frommer Andreas, Szyld Daniel B. H-Splittings and two-stage iterative methods[J]. Numer. Math.1992, 63: 345-356.[8] Golub Gene H, Van Loan Charles F. Matrix Computation. Third Edition. The Johns HopkinsUniversity Press, 1996.[9] Lanzkron Paul J, Rose Donald J, Szyld Daniel B. Convergence of nested classical iterative methodsfor linear systems[J]. Numer. Math. 1991, 58: 685-702.[10] Liu Zhongyun, Wu Hebin, Lin Lu. The two-stage iterative methods for symmetric positive definitematrices[J]. Appl. Math. Comput. 2000, 114: 1-12.[11] Liu Zhongyun, Fassbender Heike. Some properties of generalized K-centrosymmetric Hmatrices[J]. J. Comput. Appl. Math. 2008, 215: 38-48.[12] Liu Zhongyun, Zhang Yulin, Carla Ferreira, Rahla Rui. On inverse eigenvalue problems for blockToeplitz matrices with Toeplitz blocks[J]. Appl. Math. Comput. 2010, 216(6): 1819-1830.[13] Ng Michael K. Iterative Methods for Toeplitz Systems, Oxford University Press, Oxford, UK,2004.[14] 蔡放. 块二级迭代法的近似最优内迭代次数[J]. 计算数学, 2008,30: 89-98. |
[1] | 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33. |
[2] | 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118. |
[3] | 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443. |
[4] | 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321. |
[5] | 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366. |
[6] | 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412. |
[7] | 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226. |
[8] | 袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16. |
[9] | 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109. |
[10] | 李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117. |
[11] | 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471. |
[12] | 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456. |
[13] | 吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236. |
[14] | 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50. |
[15] | 李枝枝, 柯艺芬, 储日升, 张怀. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||