王文强1,2, 陈艳萍3
王文强, 陈艳萍. 非线性随机延迟微分方程Heun方法的数值稳定性[J]. 计算数学, 2011, 33(1): 69-76.
Wang Wenqiang, Chen Yanping. NUMERICAL STABILITY OF HEUN METHODS FOR NONLINEAR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS[J]. Mathematica Numerica Sinica, 2011, 33(1): 69-76.
Wang Wenqiang1,2, Chen Yanping3
本文讨论一般非线性随机延迟微分方程Heun方法的数值稳定性,证明了如果问题本身满足零解是均方指数稳定和均方渐近稳定的充分条件,则当方程的漂移项进一步满足一定的条件时,Heun方法是MS-稳定的, 带线性插值的Heun方法是均方指数稳定的和GMS-稳定的理论结果. 文末的数值试验进一步验证了所得的相关结论.
MR(2010)主题分类:
分享此文:
[1] Christopher T H Baker. Evelyn Buckwar, Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations[J]. J. Comput. Appl. Math., 2005, 184: 404-427. |
[1] | 李军成, 刘成志, 郭啸. 导数振荡与应变能极小的平面分段三次参数Hermite插值[J]. 计算数学, 2022, 44(1): 97-106. |
[2] | 彭捷, 代新杰, 肖爱国, 卜玮平. 中立型随机延迟微分方程分裂步θ方法的强收敛性[J]. 计算数学, 2020, 42(1): 18-38. |
[3] | 王同科, 樊梦. 第二类端点奇异Fredholm积分方程的分数阶退化核方法[J]. 计算数学, 2019, 41(1): 66-81. |
[4] | 张迪, 刘华勇, 李璐, 张大明, 王焕宝. 基于几何连续的AT-β-Spline曲线曲面的构造[J]. 计算数学, 2018, 40(3): 227-240. |
[5] | 李军成, 刘成志. 带参数的C3连续拟Catmull-Rom样条函数[J]. 计算数学, 2018, 40(1): 96-106. |
[6] | 李军成, 刘成志. 形状可调的C2连续三次三角Hermite插值样条[J]. 计算数学, 2016, 38(2): 187-199. |
[7] | 樊梦, 王同科, 常慧宾. 非光滑函数的分数阶插值公式[J]. 计算数学, 2016, 38(2): 212-224. |
[8] | 刘植, 肖凯, 江平, 谢进. 一类四次有理插值样条的点控制[J]. 计算数学, 2016, 38(1): 56-64. |
[9] | 宋爱平, 陶建明, 易旦萍, 张益汉. 可调形三次三角Cardinal插值样条曲线[J]. 计算数学, 2015, 37(1): 34-41. |
[10] | 徐应祥. n维散乱数据带自然边界条件多元多项式样条插值[J]. 计算数学, 2014, 36(4): 407-426. |
[11] | 王同科, 佘海艳, 刘志方 . 分数阶光滑函数线性和二次插值公式余项估计[J]. 计算数学, 2014, 36(4): 393-406. |
[12] | 司红颖, 陈绍春. 半线性椭圆问题Petrov-Galerkin逼近及亏量迭代[J]. 计算数学, 2014, 36(3): 316-324. |
[13] | 赵桂华, 李春香, 孙波. 带跳随机微分方程的Euler-Maruyama方法的几乎处处指数稳定性和矩稳定性[J]. 计算数学, 2014, 36(1): 65-74. |
[14] | 王刚, 周小辉, 王宝勤. n维特殊伸缩矩阵的构造与n维广义插值细分函数向量[J]. 计算数学, 2013, 35(4): 377-384. |
[15] | 刘植, 陈晓彦, 江平, 张莉. 基于函数值的线性有理插值样条的区域控制[J]. 计算数学, 2011, 33(4): 367-372. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||