• 论文 • 上一篇    下一篇

陀螺系统特征值问题的收缩Jacobi-Davidson方法

周星月, 戴华   

  1. 南京航空航天大学数学系, 南京 210016
  • 收稿日期:2012-03-22 出版日期:2012-11-15 发布日期:2012-11-12
  • 基金资助:

    国家自然科学基金(No.11071118)资助项目

周星月, 戴华. 陀螺系统特征值问题的收缩Jacobi-Davidson方法[J]. 计算数学, 2012, 34(4): 341-350.

Zhou Xingyue, Dai Hua. THE JACODI-DAVIDSON METHOD WITH DEFLATION FOR SOLVING EIGENVALUE PROBLEMS OF GYROSCOPIC SYSTEMS[J]. Mathematica Numerica Sinica, 2012, 34(4): 341-350.

THE JACODI-DAVIDSON METHOD WITH DEFLATION FOR SOLVING EIGENVALUE PROBLEMS OF GYROSCOPIC SYSTEMS

Zhou Xingyue, Dai Hua   

  1. Dept. of Math., Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2012-03-22 Online:2012-11-15 Published:2012-11-12
本文研究陀螺系统特征值问题的Jacobi-Davidson方法. 利用陀螺系统的结构性质,给出了求解Jacobi-Davidson方法中校正方程的有效方法. 基于非等价低秩收缩技术,给出了计算陀螺系统一些特征值的收缩Jacobi-Davidson方法. 数值结果表明本文所给算法是有效的.
The Jacobi-Davidson method for solving eigenvalue problems of gyroscopic systems is considered in this paper. Using the structural properties of gyroscopic systems, an efficient algorithm for solving the correction equation in the Jacobi-Davidson method is presented. Based on the non-equivalence low-rank deflation technique, the Jacobi-Davidson method with deflation for computing some eigenvalues of gyroscopic systems is developed. Numerical results show that the proposed methods are efficient.

MR(2010)主题分类: 

()
[1] 张文. 转子动力学理论基础[M]. 北京:科学出版社, 1990.

[2] Tisseur F, Meerbergen K. The quadratic eigenvalue problem[J]. SIAM Rev., 2001, 43: 235-286.

[3] 郑兆昌, 任革学. 陀螺特征值问题的广义SRR子空间迭代法及其加速法[J]. 振动与冲击, 1997, 16(2): 6-11.

[4] Bauchau O A. A solution of the eigenproblem for undamped gyroscopic systems with the Lanczosalgorithm[J]. Int. J. Num. Met. Eng., 1986, 23: 1705-1713.

[5] Gupta K K, Lawson C L. Development of a block Lanczos algorithm for free vibration analysisof spinning structures[J]. Int. J. Num. Met. Eng., 1988, 26: 1029-1037.

[6] 郑兆昌, 任革学. 大型陀螺特征值问题的广义Arnoldi减缩算法[J].固体力学学报, 1996, 17(4): 283-289.

[7] 隋永枫, 钟万勰. 陀螺系统辛子空间迭代法[J]. 振动工程学报,2006, 19: 128-132.

[8]

[8] Ferng W R, Lin W W, Wang C S. Numerical algorithms for undamped gyroscopic systems[J].Comp. Math. Appl., 1999, 37: 49-66.

[9] Benner P, Fassbender H, Stoll M. Solving large-scale quadratic eigenvalue problems with Hamiltonianeigenstructure using a structure-preserving Krylov subspace method[J]. Electronic Transactionson Numerical Analysis, 2008, 29: 212-229.

[10] Hwang T M, Lin W W, Mehrmann V. Numerical solution of quadratic eigenvalue problems withstructure preserving methods[J]. SIAM J. Sci. Comput., 2003, 24:1283-1302.

[11] Sleijpen G L G, Van der Vorst H A. A Jacobi-Davidson iteration method for linear eigenvalueproblems[J]. SIAM J. Matrix Anal. Appl., 1996, 17:401-425.

[12] Sleijpen G L G, Booten A G L, Fokkema D R, Van der Vorst H A. Jacobi-Davidson type methodsfor generalized eigenproblems and polynomial eigenproblems[J]. BIT, 1996, 36: 595-633.

[13] 贾仲孝, 孙玉泉. 精化的二次残量迭代法[J]. 高等学校计算数学学报, 2004, 26: 146-154.

[14] Bai Z J, Su Y F. SOAR: A second-order Arnoldi method for the solution of the quadraticeigenvalue problem[J]. SIAM J. Matrix Anal. Appl., 2005, 26:640-659.

[15] Meerbergen K. The quadratic Arnoldi method for the solution of the quadratic eigenvalue problem[J]. SIAM J. Matrix Anal. Appl., 2008, 30:1463-1682.

[16] 张治中. 精化迭代块二阶Arnoldi方法[D]. 南京航空航天大学硕士学位论文, 2006.

[17] 孔艳花, 戴华. 求解陀螺系统特征值问题的收缩二阶Lanczos方法[J]. 计算数学, 2011, 33:328-336.

[18] Chu M T, Hwang T M, Lin W W. A novel deflation technique for solving quadratic eigenproblems[R]. Preprint, 2005-3-002, National Tsing-Hua University, 2005.

[19] Chu M T, Lin W W, Xu S F. Updating quadratic models with no spillover effect on unmeasuredspectral data[J]. Inverse Problems, 2007, 23: 243-256.

[20] Paige C C, Saunders M A. Solution of sparse indefinite systems of linear equations[J]. SIAM J.Numer. Anal., 1975, 12:617-629.

[21] 蒋尔雄. 矩阵计算[M]. 北京: 科学出版社, 2008.
[1] 曹阳, 戴华. 非线性特征值问题的二次近似方法[J]. 计算数学, 2014, 36(4): 381-392.
[2] 孔艳花, 戴华. 求解陀螺系统特征值问题的收缩二阶Lanczos方法[J]. 计算数学, 2011, 33(3): 328-336.
阅读次数
全文


摘要