张旭, 檀结庆
张旭, 檀结庆. 三步五阶迭代方法解非线性方程组[J]. 计算数学, 2013, 35(3): 297-304.
Zhang Xu, Tan Jieqing. THE FIFTH ORDER OF THREE-STEP ITERATIVE METHODS FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS[J]. Mathematica Numerica Sinica, 2013, 35(3): 297-304.
Zhang Xu, Tan Jieqing
MR(2010)主题分类:
分享此文:
[1] Sharma J R, Guha R K, Sharma R. An efficient fourth order weighted-Newton method for systems of nonlinear equations[J]. Numerical Algorithms, 2013, 62(2): 307-323. [2] Golbabai A, Javidi M. A new family of iterative methods for solving system of nonlinear algebric equations[J]. Applied Mathematics and Computation, 2007, 190(2): 1717-1722. [3] Darvishi M T, Barati A. Super cubic iterative methods to solve systems of nonlinear equations[J]. Applied Mathematics and Computation, 2007, 188(2): 1678-1685. [4] Babajee D K R, Dauhoo M Z, Darvishi M T, Barati A. A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule[J]. Applied Mathematics and Computation, 2008, 200(1): 452-458. [5] Khirallah M Q, Hafiz M A. Novel three order methods for solving a system of nonlinear equations[J]. Bulletin of Society for Mathematical Services and Standards, 2012, 1(2): 1-14. [6] Hafiz M A, Bahgat M S M. An efficient two-step iterative method for solving system of nonlinear equations[J]. Journal of Mathematics Research, 2012, 4(4): 28-34. [7] Cordero A, Torregrosa J R. Variants of Newton's method using fifth-order quadrature formulas[J]. Applied Mathematics and Computation, 2007, 190(1): 686-698. [8] Noor M A, Waseem M. Some iterative methods for solving a system of nonlinear equations[J]. Computers and Mathematics with Applications, 2009, 57(1): 101-106. [9] 代璐璐, 檀结庆. 两种解非线性方程组的四阶迭代方法[J]. 数值 计算与计算机应用, 2012, 33(2): 121-128. [10] Ortega J M, Rheinboldt W C. Iterative solution of nonlinear equations in several variables[M]. New York and London: Academic Press, 1970. [11] Podisuk M, Chundang U, Sanprasert W. Single step formulas and multi-step formulas of the integration method for solving the initial value problem of ordinary differential equation[J]. Applied Mathematics and Computation, 2007, 190(2): 1438-1444. [12] Cordero A, Hueso J L, Martínez E, Torregrosa J R. Increasing the convergence order of an iterative method for nonlinear systems[J]. Applied Mathematics Letters, 2012, 25(12): 2369-2374. [13] Cordero A, Hueso J L, Martínez E, Torregrosa J R. A modified Newton-Jarratt's composition[J]. Numerical Algorithms, 2010, 55(1): 87-99. [14] 何翠杰, 阿布都热西提·阿布都外力. 三步迭代求解非线 性方程组[J]. 新疆大学学报: 自然科学版, 2010, 27(1): 51-55. |
[1] | 马积瑞, 范金燕. 信赖域方法在Hölderian局部误差界下的收敛性质[J]. 计算数学, 2021, 43(4): 484-492. |
[2] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[3] | 刘金魁, 孙悦, 赵永祥. 凸约束伪单调方程组的无导数投影算法[J]. 计算数学, 2021, 43(3): 388-400. |
[4] | 王同科, 樊梦. 第二类端点奇异Fredholm积分方程的分数阶退化核方法[J]. 计算数学, 2019, 41(1): 66-81. |
[5] | 裕静静, 江平, 刘植. 两类五阶解非线性方程组的迭代算法[J]. 计算数学, 2017, 39(2): 151-166. |
[6] | 张旭, 檀结庆, 艾列富. 一种求解非线性方程组的3p阶迭代方法[J]. 计算数学, 2017, 39(1): 14-22. |
[7] | 郭俊, 吴开腾, 张莉, 夏林林. 一种新的求非线性方程组的数值延拓法[J]. 计算数学, 2017, 39(1): 33-41. |
[8] | 许秀秀, 黄秋梅. 拟等级网格下非线性延迟微分方程间断有限元法[J]. 计算数学, 2016, 38(3): 281-288. |
[9] | 樊梦, 王同科, 常慧宾. 非光滑函数的分数阶插值公式[J]. 计算数学, 2016, 38(2): 212-224. |
[10] | 张英晗, 杨小远. 一类带有空间时间白噪音随机弹性方程的全离散差分格式[J]. 计算数学, 2016, 38(1): 25-46. |
[11] | 孟文辉, 王连堂. Helmholtz方程周期Green函数及其偏导数截断误差收敛阶的分析[J]. 计算数学, 2015, 37(2): 123-136. |
[12] | 刘晴, 檀结庆, 张旭. 一种基于Chebyshev迭代解非线性方程组的方法[J]. 计算数学, 2015, 37(1): 14-20. |
[13] | 王洋, 伍渝江, 付军. 一类弱非线性方程组的Picard-MHSS迭代方法[J]. 计算数学, 2014, 36(3): 291-302. |
[14] | 杨爱利, 伍渝江, 李旭, 孟玲玲. 一类非线性方程组的Newton-PSS迭代法[J]. 计算数学, 2012, 34(4): 329-340. |
[15] | 陈传淼, 胡宏伶, 雷蕾, 曾星星. 非线性方程组的Newton流线法[J]. 计算数学, 2012, 34(3): 235-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||