• 青年评述 •    下一篇

曲率流的参数化有限元逼近

李步扬   

  1. 香港理工大学应用数学系
  • 收稿日期:2021-09-24 出版日期:2022-05-14 发布日期:2022-05-06
  • 作者简介:李步扬,香港理工大学应用数学系副教授,现为计算数学杂志SIAM Journal on Numerical Analysis和Mathematics of Computation的编委.作者2005年本科毕业于山东大学、2012年在香港城市大学数学系获博士学位,博士毕业后入职南京大学,2015年作为洪堡学者赴University of Tübingen从事研究一年,后于2016年加入香港理工大学工作至今.主要研究领域为偏微分方程的数值计算方法,包括曲率流的数值逼近和误差分析、非线性色散方程不光滑解的计算方法、不可压Navier——Stokes方程的数值分析、非线性抛物方程的Lp范数误差估计、分数阶偏微分方程的高精度求解、热敏电阻方程的适定性和数值分析,等等.
  • 基金资助:
    香港研资局优配研究金PolyU15300920(Research Grants Council of Hong Kong SAR, GRF Project No.PolyU15300920)资助.

李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162.

Li Buyang. PARAMETRIC FINITE ELEMENT APPROXIMATIONS OF CURVATURE FLOWS[J]. Mathematica Numerica Sinica, 2022, 44(2): 145-162.

PARAMETRIC FINITE ELEMENT APPROXIMATIONS OF CURVATURE FLOWS

Li Buyang   

  1. Department of Applied Mathematics, The Hong Kong Polytechnic University Hong Kong, China
  • Received:2021-09-24 Online:2022-05-14 Published:2022-05-06
许多物理现象可以在数学上描述为受曲率驱动的自由界面运动,例如薄膜和泡沫的演变、晶体生长,等等.这些薄膜和界面的运动常依赖于其表面曲率,从而可以用相应的曲率流来描述,其相关自由界面问题的数值计算和误差分析一直是计算数学领域中的难点.参数化有限元法是曲率流的一类有效计算方法,已经能够成功模拟一些曲面在几类基本的曲率流下的演化过程.本文重点讨论曲率流的参数化有限元逼近,它的产生、发展和当前的一些挑战.
Many physical phenomena can be mathematically described by curvature-driven free interface motions, such as the evolution of films and foams, crystal growth, and so on. The motion of these films and interfaces often depends on their surface curvature and therefore can be described by the corresponding curvature flows and geometric evolution equations. The numerical computation and error analysis of the related free interface problems are still challenging problems in the field of computational mathematics. The parametric finite element method is a class of effective computational methods for approximating curvature flows, and it has been successful in simulating the evolution of some basic curvature flows, including mean curvature flow, Willmore flow, surface diffusion, and so on. This article focuses on the parametric finite element approximation of curvature flows-its origin, development and some current challenges.

MR(2010)主题分类: 

()
[1] Allen S M and Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metall., 1979, 27:1084-1095.
[2] Bänsch E, Morin P and Nochetto R H. A finite element method for surface diffusion:The parametric case[J]. J. Comput. Phys., 2005, 203:321-343.
[3] Bao W, Jiang W, Wang Y and Zhao Q. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies[J]. J. Comput. Phys., 2017, 330:380-400.
[4] Bao W and Zhao Q. A structure-preserving parametric finite element method for surface diffusion[J]. SIAM J. Numer. Anal., 2021, 59:2775-2799.
[5] Barrett J W, Deckelnick K and Styles V. Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve[J]. SIAM J. Numer. Anal., 2017, 55:1080-1100.
[6] Barrett J W, Garcke H and Nürnberg R. A parametric finite element method for fourth order geometric evolution equations[J]. J. Comput. Phys., 2007, 222:441-467.
[7] Barrett J W, Garcke H and Nürnberg R. Parametric approximation of Willmore flow and related geometric evolution equations[J]. SIAM J. Sci. Comput., 2008, 31:225-253.
[8] Barrett J W, Garcke H and Nürnberg R. On the parametric finite element approximation of evolving hypersurfaces in R3[J]. J. Comput. Phys., 2008, 227:4281-4307.
[9] Barrett J W, Garcke H and Nürnberg R. Numerical computations of the dynamics of fluidic membranes and vesicles[J]. Phys. Rev. E, 2015, 92:052704.
[10] Barrett J W, Deckelnick K and Nürnberg R. A finite element error analysis for axisymmetric mean curvature flow[J]. IMA J. Numer. Anal., 2021, 41:1641-1667.
[11] Barrett J W, Garcke H and Nürnberg R. Chapter 4-Parametric finite element approximations of curvature-driven interface evolutions[J]. Handbook of Numerical Analysis, 2020, 21:275-423.
[12] Brakke K A. The Motion of a Surface by Its Mean Curvature[M]. Princeton University Press, 1978.
[13] Cahn J W, Elliott C M and Novick-Cohen A. The Cahn-Hilliard equation with a concetration dependent mobility:motion by minus the Laplacian of the mean curvature[J]. Euro. Jnl. of Applied Mathematics, 1996, 7:287-301.
[14] Deckelnick K and Dziuk G. Convergence of a finite element method for non-parametric mean curvature flow[J]. Numer. Math., 1995, 72:197-222.
[15] Deckelnick K and Dziuk G. On the approximation of the curve shortening flow. In Calculus of variations, applications and computations (Pont-à-Mousson, 1994), volume 326 of Pitman Res. Notes Math. Ser., 100-108. Longman Sci. Tech., Harlow, 1995.
[16] Deckelnick K and Dziuk G. Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs[J]. Interfaces & Free Boundaries, 2000, 2:341-359.
[17] Dziuk G. An algorithm for evolutionary surfaces[J]. Numer. Math., 1991, 58:603-611.
[18] Dziuk G. Convergence of a semi-discrete scheme for the curve shortening flow[J]. Math. Models Methods Appl. Sci., 1994, 4:589-606.
[19] Dziuk G. Discrete anisotropic curve shortening flow[J]. SIAM J. Numer. Anal., 1999, 36:1808- 1830.
[20] Dziuk G. Computational parametric Willmore flow[J]. Numer. Math., 2006, 111:55-80.
[21] Dziuk G and Elliott C M. Finite elements on evolving surfaces[J]. IMA J. Numer. Anal., 2007, 27:262-292.
[22] Dziuk G and Elliott C M. A fully discrete evolving surface finite element method[J]. SIAM J. Numer. Anal., 2012, 50:2677-2694.
[23] Dziuk G and Elliott C M. L2-estimates for the evolving surface finite element method[J]. Math. Comp., 2013, 82:1-24.
[24] Dziuk G, Lubich C and Mansour D. Runge-Kutta time discretization of parabolic differential equations on evolving surfaces[J]. IMA J. Numer. Anal., 2011, 32:394-416.
[25] Elliott C M and Fritz H. On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick[J]. IMA J. Numer. Anal., 2017, 37:543-603.
[26] Elliott C M and Stinner B. Modeling and computation of two phase geometric biomembranes using surface finite elements[J]. J. Comput. Phys., 2010, 229:6585-6612.
[27] Helfrich W. Elastic properties of lipid bilayers:theory and possible experiments[J]. Zeitschrift für Naturforschung C, 1973, 28:693-703.
[28] Ishida S, Yamamoto M, Ando R, Hachisuka T. A hyperbolic geometric flow for evolving films and foams[J]. ACM Transactions on Graphics, 2017, 36:article 199.
[29] Huisken G. Flow by mean curvature of convex surfaces into spheres[J]. J. Differential Geometry, 1984, 20:237-266.
[30] Jiang W and Li B. A perimeter-decreasing and area-conserving algorithm for surface diffusion flow of curves[J]. J. Comput. Phys., 2021, 443:article 110531.
[31] Kovács B, Li B and Lubich C. A convergent evolving finite element algorithm for mean curvature flow of closed surfaces[J]. Numer. Math., 2019, 143:797-853.
[32] Kovács B, Li B and Lubich C. A convergent algorithm for forced mean curvature flow driven by diffusion on the surface[J]. Interfaces & Free Boundaries, 2020, 22:443-464.
[33] Kovács B, Li B and Lubich C. A convergent evolving finite element algorithm for Willmore flow of closed surfaces[J]. Numer. Math., 2021, 149:595-643.
[34] Kovács B, Li B, Lubich C and Power Guerra C A. Convergence of finite elements on an evolving surface driven by diffusion on the surface[J]. Numer. Math., 2017, 137:643-689.
[35] Li B. Convergence of Dziuk's linearly implicit parametric finite element method for curve shortening flow[J]. SIAM J. Numer. Anal., 2020, 58:2315-2333.
[36] Li B. Convergence of Dziuk's semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements[J]. SIAM J. Numer. Anal., 2021, 59:1592-1617.
[37] Mullins W W. Two dimensional motion of idealized grain boundaries[J]. J. Appl. Phys., 1956, 27:900-904.
[38] Mullins W W. Theory of thermal grooving[J]. J. Appl. Phys., 1957, 28:333-339.
[39] Pozzi P. Anisotropic curve shortening flow in higher codimension[J]. Math. Meth. Appl. Sci., 2007, 30:1243-1281.
[40] Rusu R E. An algorithm for the elastic flow of surfaces[J]. Interfaces & Free Boundaries, 2005, 7:229-239.
[41] Tiller W A. The Science of Crystallization[M]. Cambridge University Press, 1991.
[42] White B. Evolution of curves and surfaces by mean curvature. In Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 525-538. Higher Ed. Press, Beijing, 2002.
[43] Wörner M. Numerical modeling of multiphase flows in microfluidics and micro process engineering:a review of methods and applications[J]. Microfluid. Nanofluid., 2012, 12:841-886.
[44] Xu G and Zhang Q. Geometric Partial Differential Equation Methods in Computational Geometry[M]. Science Press, 2000.
[45] Ye C and Cui J. Convergence of Dziuk's fully discrete scheme for curve shortening flow[J]. SIAM J. Numer. Anal., 2021, 59:2823-2842.
[46] Zhao Q, Jiang W and Bao W. A parametric finite element method for solid-state dewetting problems in three dimensions[J]. SIAM J. Sci. Comput., 2020, 42:B327-B352.
[47] Zhao Q, Jiang W and Bao W. An energy-stable parametric finite element method for simulating solid-state dewetting[J]. IMA J. Numer. Anal., 2021, 41:2026-2055.
[1] 杨学敏, 牛晶, 姚春华. 椭圆型界面问题的破裂再生核方法[J]. 计算数学, 2022, 44(2): 217-232.
[2] 马玉敏, 蔡邢菊. 求解带线性约束的凸优化的一类自适应不定线性化增广拉格朗日方法[J]. 计算数学, 2022, 44(2): 272-288.
[3] 许志强. 相位恢复:理论、模型与算法[J]. 计算数学, 2022, 44(1): 1-18.
[4] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[5] 张法勇, 安晓丽. 带五次项的非线性Schrödinger方程的守恒差分格式[J]. 计算数学, 2022, 44(1): 63-70.
[6] 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118.
[7] 刘嘉诚, 陈先进, 段雅丽, 李昭祥. 改进的PNC方法及其在非线性偏微分方程多解问题中的应用[J]. 计算数学, 2022, 44(1): 119-136.
[8] 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443.
[9] 唐耀宗, 杨庆之. 非线性特征值问题平移对称幂法的收敛率估计[J]. 计算数学, 2021, 43(4): 529-538.
[10] 马积瑞, 范金燕. 信赖域方法在Hölderian局部误差界下的收敛性质[J]. 计算数学, 2021, 43(4): 484-492.
[11] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
[12] 陈明卿, 谢小平. 随机平面线弹性问题的一类弱Galerkin方法[J]. 计算数学, 2021, 43(3): 279-300.
[13] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[14] 胡雅伶, 彭拯, 章旭, 曾玉华. 一种求解非线性互补问题的多步自适应Levenberg-Marquardt算法[J]. 计算数学, 2021, 43(3): 322-336.
[15] 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366.
阅读次数
全文


摘要