• 论文 • 上一篇    

求解二维Fisher-KPP方程的一类保正保界差分格式及其Richardson外推法

邓定文, 赵紫琳   

  1. 南昌航空大学数学与信息科学学院, 南昌 330063
  • 收稿日期:2021-07-22 出版日期:2022-11-14 发布日期:2022-11-08
  • 通讯作者: 邓定文,Email:dengdingwen2010@163.com.
  • 基金资助:
    国家自然科学基金(11861047,11871393),江西省自然科学基金(20202BABL201005),陕西省国际合作计划重点项目(2019KWZ-08),江西省杰出青年基金(20212ACB211006).

邓定文, 赵紫琳. 求解二维Fisher-KPP方程的一类保正保界差分格式及其Richardson外推法[J]. 计算数学, 2022, 44(4): 561-584.

Deng Dingwen, Zhao Zilin. A POSITIVITY AND BOUNDEDNESS PRESERVING DIFFERENCE SCHEME AND ITS RICHARDSON EXTRAPOLATION METHOD FOR SOLVING A TWO-DIMENSIONAL FISHER-KPP EQUATION[J]. Mathematica Numerica Sinica, 2022, 44(4): 561-584.

A POSITIVITY AND BOUNDEDNESS PRESERVING DIFFERENCE SCHEME AND ITS RICHARDSON EXTRAPOLATION METHOD FOR SOLVING A TWO-DIMENSIONAL FISHER-KPP EQUATION

Deng Dingwen, Zhao Zilin   

  1. School of Mathematics and Information Science, Nanchang Hangkong University, Nanchang 330063, China
  • Received:2021-07-22 Online:2022-11-14 Published:2022-11-08
本文研究求解二维Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP)方程的一类保正保界差分格式.运用能量分析法证明了当网格比满足$R_{x}+R_{y}+[b\tau (p-1)]/2\leq\frac{1}{2}$时差分解具有一系列数学性质,包括保正性、保界性和单调性,且在无穷范数意义下有$O (\tau+h_{x}^{2}+h_{y}^{2})$的收敛阶.然后通过发展Richardson外推法得到收敛阶为$O (\tau^{2}+h_{x}^{4}+h_{y}^{4})$的外推解.最后数值实验表明数值结果与理论结果相吻合.值得提及的是在运用本文构造的Richardson外推法时对时空网格比没有增加更严格的条件.
In this paper, a positivity-preserving difference scheme is studied for two-dimensional Fisher-Kolmogorov-Petrovsky-Piscounov equation (Fisher-KPP). The energy analysis method is used to prove that the difference scheme has a series of mathematical properties, including preserving positivity, preserving boundedness, preserving monotonicity, and has a convergence order of $O(\tau+h_x^2+h_y^2)$ in maximum norm, when the ratio of temporal meshsize to spatial meshsizes satisfy $R_{x}+R_{y}+[b\tau(p-1)]/2\leq \frac{1}{2}$. Then by developing Richardson extrapolation methods (REMs), the extrapolation solutions with convergence orders of $O(\tau^{2}+h_{x}^{4}+h_{y}^{4})$ are obtained. Finally, two numerical examples are given to confirm that the numerical results agree well with the theoretical results. It is worthwhile meaning that the condition of the ratios of temporal meshsize to spatial meshsizes as the current REMs are used are the same as the one of the original numerical method.

MR(2010)主题分类: 

()
[1] Fisher R A, Sc D, F R S. The wave of advance of advantageous genes[J]. Annals of Human Genetics, 1937, 7(4):355-369.
[2] Kolmogorov A N, Petrovskii I G, Piscounov N S. Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Bull. Univ. Moskou Ser. Int., 1 A (1937) 1-25.
[3] Wang X Y. Exact and explicit solitary wave solutions for the generalised Fisher equation[J]. Physics Letters A, 1988, 131(4-5):277-279.
[4] Brazhnik P K, Tyson J J. On traveling wave solutions of Fisher's equation in two spatial dimensions[J]. SIAM Journal on Applied Mathematics, 1999, 60(2):371-391.
[5] Wazwaz A M, Gorguis A. An analytic study of Fisher's equation by using Adomian decomposition method[J]. Applied Mathematics and Computation, 2004, 154(3):609-620.
[6] Qin W, Ding D, Ding X. Two boundedness and monotonicity preserving methods for a generalized Fisher-KPP equation[J]. Applied Mathematics and Computation, 2015, 252:552-567.
[7] Chandraker V, Awasthi A, Jayaraj S. A Numerical treatment of Fisher equation[J]. Procedia Engineering, 2015, 12:1256-1262.
[8] Chandraker V, Awasthi A, Jayaraj S. Implicit numerical techniques for Fisher equation[J]. Journal of Information and Optimization Sciences, 2018, 39(1):1-13.
[9] Izadi M. A second-order accurate finite-difference scheme for the classical Fisher-KolmogorovPetrovsky-Piscounov equation[J]. Journal of Information and Optimization Sciences, 2020, 2:1-18.
[10] Daniel O, Bernie D S. A pseudospectral method of solution of Fisher's equation[J]. Journal of Computational and Applied Mathematics, 2006, 193:219-242.
[11] Balyan L K, Mittal A K, Kumar M. Stability analysis and highly accurate numerical approximation of Fisher's equations using pseudospectral method[J]. Mathematics and Computers in Simulation, 2020, 177:87-104.
[12] Mittal R C, Kumar S. Numerical study of Fisher's equation by wavelet Galerkin method[J]. International Journal of Computer Mathematics, 2006, 83(3):287-298.
[13] Hariharan G, Kannan K, Sharma K R. Haar wavelet method for solving Fisher's equation[J]. Applied Mathematics and Computation, 2009, 211:284-292.
[14] Carey G F, Yun S. Least-squares finite element approximation of Fisher's reaction-diffusion equation[J]. Numerical Methods for Partial Differential Equations, 1995, 11:175-186.
[15] Dag i, Sahin A, KOrkmaz A. Numerical investigation of the solution of Fisher's equation via the B-Spline Galerkin method[J]. Numerical Methods for Partial Differential Equations, 2010, 26:1483-1503.
[16]吴宏伟. 关于广义KPP方程的数值解[J]. 计算数学, 2009, 31(2):137-150.
[17]吴宏伟. 一类半线性反应扩散方程组的二层线性化有限差分格式[J]. 高等学校计算数学学报, 2008, 30(3):250-260.
[18]刘剑明. 带有非线性非局部流量边界条件反应扩散方程的有限差分格式[J]. 高等学校计算数学学报, 2008, 30(4):310-324.
[19]汤华中. 一个刚性守恒律方程组的全隐式差分方法[J]. 计算数学, 2001, 23(2):129-138.
[20]汤华中, 徐昆. 一类通矢量分裂方法的保正性研究I. 显式格式[J]. 计算数学, 2001, 23(4):469-476.
[21]袁光伟. 扩散方程九点格式的保正性与极值性[J]. 数值计算与计算机应用, 2021, 42(2):134-145.
[22]贾东旭, 盛志强, 袁光伟. 扩散方程一种无条件稳定的保正并行有限差分方法[J]. 计算数学, 2019, 41(3):242-258.
[23] Macias Diaz J E. A bounded finite-difference discretization of a two-dimensional diffusion equation with logistic nonlinear reaction[J]. International Journal of Modern Physics C, 2011, 9:953-966.
[24] Macias Diaz J E, Puri A. An explicit positivity-preserving finite-difference scheme for the classical Fisher-Kolmogorov-Petrovsky-Piscounov equation[J]. Applied Mathematics and Computation, 2012, 218(9):5829-5837.
[25] 孙志忠. 偏微分方程数值解法(第二版)[M]. 北京:科学出版社, 2012.
[26] Wang T, Guo B. Analysis of some finite difference schemes for two-dimensional Ginzburg-Landau equation[J]. Numerical methods for partial differential equations, 2011, 27:1340-1363.
[27] Choi J W, Lee H G, Jeong D, Kim J. An unconditionally gradient stable numerical method for solving the Allen-Cahn equation[J]. Physica A:statistical mechanics and its applications, 2009, 388:1791-1803.
[1] 郭洁, 万中. 求解大规模极大极小问题的光滑化三项共轭梯度算法[J]. 计算数学, 2022, 44(3): 324-338.
[2] 包学忠, 胡琳, 产蔼宁. 线性随机变时滞微分方程指数Euler方法的收敛性和稳定性[J]. 计算数学, 2022, 44(3): 339-353.
[3] 霍振阳, 张静娜, 黄健飞. 多项Caputo分数阶随机微分方程的Euler-Maruyama方法[J]. 计算数学, 2022, 44(3): 354-367.
[4] 李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162.
[5] 杨学敏, 牛晶, 姚春华. 椭圆型界面问题的破裂再生核方法[J]. 计算数学, 2022, 44(2): 217-232.
[6] 马玉敏, 蔡邢菊. 求解带线性约束的凸优化的一类自适应不定线性化增广拉格朗日方法[J]. 计算数学, 2022, 44(2): 272-288.
[7] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[8] 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118.
[9] 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443.
[10] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[11] 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366.
[12] 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412.
[13] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226.
[14] 袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16.
[15] 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109.
阅读次数
全文


摘要