• 论文 • 上一篇    下一篇

三类有效预处理子的关系及其优化

廖丽丹1,2, 张国凤2   

  1. 1. 南昌大学数学系, 南昌 330031;
    2. 兰州大学数学与统计学院, 兰州 730000
  • 收稿日期:2021-07-07 出版日期:2022-11-14 发布日期:2022-11-08
  • 基金资助:
    国家自然科学基金(11901278,11771193)和江西省自然科学基金(20202BAB211002)资助.

廖丽丹, 张国凤. 三类有效预处理子的关系及其优化[J]. 计算数学, 2022, 44(4): 545-560.

Liao Lidan, Zhang Guofeng. RELATIONSHIP AND IMPROVEMENTS OF THREE EFFICIENT BLOCK PRECONDITIONERS[J]. Mathematica Numerica Sinica, 2022, 44(4): 545-560.

RELATIONSHIP AND IMPROVEMENTS OF THREE EFFICIENT BLOCK PRECONDITIONERS

Liao Lidan1,2, Zhang Guofeng2   

  1. 1. Department of mathematics, Nanchang University, Nanchang 330031, China;
    2. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
  • Received:2021-07-07 Online:2022-11-14 Published:2022-11-08
针对一类由时谐抛物方程约束的最优控制问题导出的分块$2\times2$复线性方程组,进一步研究了三类有效的块预处理子,推导了这三类预处理子间的关系,结论表明三个预处理矩阵的特征值由同一个矩阵确定.通过分析预处理矩阵的谱性质,获得了有效的参数选择策略,可以进一步改进和优化现有结果,同时获得了预处理矩阵的精确特征值分布,并证明了此结果是目前文献中最优结果.最后,给出实例,不仅验证了优化的预处理子和迭代方法的有效性,而且说明了理论结果是令人信服的.
For a class of block two-by-two complex linear systems arising from the optimal control problems constrained by time-harmonic parabolic equations, we further study the three existing block preconditioners. The relationships between the three preconditioners are derived, i.e. the eigenvalues of the three precondioned matrices are determined by a same matrix. By analyzing the spectral properties of the preconditioned matrices, we obtain an efficient parameter selection strategy that can further improve and optimize the existing results, and at the same time obtain the accurate eigenvalue distribution of the preconditioned matrices, which are better than many current results. Finally, examples are given, which not only verify the effectiveness of the optimized preconditioners and iterative method, but also show that the theoretical result is convincing.

MR(2010)主题分类: 

()
[1] Axelsson O, Farouq S, Neytcheva M. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems[J]. Numer. Algorithms, 2016, 73:631-663.
[2] Axelsson O, Farouq S, Neytcheva M. A preconditioner for optimal control problems constrained by Stokes equation with a time-harmonic control[J]. J. Comput. Appl. Math., 2017, 310:5-18.
[3] Axelsson O, Neytcheva M, Ahmad B. A comparison of iterative methods to solve complex valued linear algebraic systems[J]. Numer. Algorithms, 2014, 66(4):811-841.
[4] Bai Z Z. Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems[J]. Appl. Math. Comput., 2000, 109:273-285.
[5] Bai Z Z. Motivations and realizations of Krylov subspace methods for large sparse linear systems[J]. J. Comput. Appl. Math., 2015, 283:71-78.
[6] Bai Z Z, Benzi, M, Chen F. Modified HSS iteration methods for a class of complex symmetric linear systems[J]. Computing, 2010, 87:93-111.
[7] Bai Z Z, Benzi, M., Chen F. On preconditioned MHSS iteration methods for complex symmetric linear systems[J]. Numer. Algorithms, 2011, 56:297-317.
[8] Bai Z Z. Rotated block triangular preconditioning based on PMHSS[J]. Sci. China Math., 2013, 56:2523-2538.
[9] Bai Z Z. Block preconditioners for elliptic PDE-constrained optimization problems[J]. Computing, 2011, 91(4):379-395.
[10] Bai Z Z. On preconditioned iteration methods for complex linear systems[J]. J. Engrg. Math., 2015, 93(1):41-60.
[11] Bai Z Z, Benzi M, Chen F, Wang Z Q. Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems[J]. IMA J. Numer. Anal., 2013, 33(1):343-369.
[12] Bai Z Z, Chen F, Wang Z Q. Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices[J]. Numer. Algorithms, 2013, 62(4):655-675.
[13] Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24(3):603-626.
[14] Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Numer., 2005, 14:1-137.
[15] Cordier L. Flow control and constrained optimization problems[M]. Springer Vienna, 2011.
[16] Elman H C, Ramage A, Silvester D J. IFISS:A computational Laboratory for Investigating Incompressible Flow Problems[J]. SIAM Rev., 2014, 56(2):261-273.
[17] Kollmann M, Kolmbauer M. A preconditioned MinRes solver for time-periodic parabolic optimal control problems[J]. Numer. Linear Algebra Appl., 2013, 20(5):761-784.
[18] Kolmbauer M, Langer U. A robust preconditioned MinRes solver for distributed time periodic eddy current optimal control problems[J]. SIAM J. Sci. Comput., 2012, 34(6):785-809.
[19] Krendl W, Simoncini V, Zulehner W. Stability estimates and structural spectral properties of saddle point problems[J]. Numer. Math., 2013, 124(1):183-213.
[20] Liang Z Z, Axelsson O, Neytcheva M. A robust structured preconditioner for time-harmonic parabolic optimal control problems[J]. Numer. Algorithms, 2018, 79:575-596.
[21] Liao L D, Zhang G F. A note on block diagonal and block triangular preconditioners for complex symmetric linear systems[J]. Numer. Algorithms, 2019, 80(4):1143-1154.
[22] Liao L D, Zhang G F, Zhang L. Robust preconditioners for optimal control with time-periodic parabolic equation[J]. Comput. Math. Appl., 2018, 76(10):2514-2522.
[23] Liao L D, Zhang G F, Li R X. Optimizing and improving of the C-to-R method for solving complex symmetric linear systems[J]. Appl. Math. Lett., 2018, 82:79-84.
[24] Pearson J W. Fast iterative solvers for PDE-constrained optimization problems[D]. University of Oxford, 2013.
[25] Pearson J W, Wathen A J. A new approximation of the Schur complement in preconditioners for PDE-constrained optimization[J]. Numer. Linear Algebra Appl., 2012, 19(5):816-829.
[26] Rees T, Dollar H S, Wathen A J. Optimal solvers for PDE-constrained optimization[J]. SIAM J. Sci. Comput. 2010, 32(1):271-298.
[27] Rees T, Stoll M. Block-triangular preconditioners for PDE-constrained optimization[J]. Numer. Linear Algebra Appl., 2012, 17:977-996.
[28] Ren Z R, Cao Y, An alternating positive semi-definite splitting preconditioner for saddle point problems from time harmonic eddy current models[J]. IMA J. Numer. Anal., 2016, 36:922-946.
[29] Saad Y. Iterative Methods for Sparse Linear Systems[M]. SIAM, Philadelphia, 2003.
[30] Zheng Z, Zhang G F, Zhu M Z. A block alternating splitting iteration method for a class of block two-by-two complex linear systems[J]. Comput. Appl. Math., 2015, 288:203-214.
[31] Zheng Z, Zhang G F, Zhu M Z. A note on preconditioners for complex linear systems arising from PDE-constrained optimization problems[J]. Appl. Math. Lett., 2016, 61:114-121.
[32] Zulehner W. Nonstandard norms and robust estimates for saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2011, 32(2):536-560.
[1] 孙家昶. 数学物理方程离散特征值问题的几何网格因式分解算法[J]. 计算数学, 2022, 44(4): 433-465.
[2] 刘瑶宁. 几乎各向同性的高维空间分数阶扩散方程的分块快速正则Hermite分裂预处理方法[J]. 计算数学, 2022, 44(2): 187-205.
[3] 缪树鑫. 关于“求解加权线性最小二乘问题的一类预处理GAOR方法”一文的注记[J]. 计算数学, 2022, 44(1): 89-96.
[4] 唐跃龙, 华玉春. 椭圆最优控制问题分裂正定混合有限元方法的超收敛性分析[J]. 计算数学, 2021, 43(4): 506-515.
[5] 孙琪, 陶蕴哲, 杜强. 深度学习中残差网络的随机训练策略[J]. 计算数学, 2020, 42(3): 349-369.
[6] 曹阳, 陈莹婷. 正则化HSS预处理鞍点矩阵的特征值估计[J]. 计算数学, 2020, 42(1): 51-62.
[7] 王丽, 罗玉花, 王广彬. 求解加权线性最小二乘问题的一类预处理GAOR方法[J]. 计算数学, 2020, 42(1): 63-79.
[8] 覃燕梅, 冯民富. 非定常Oseen方程最优控制问题的一种新型L2投影稳定化方法[J]. 计算数学, 2016, 38(4): 412-428.
[9] 任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322.
[10] 李繁春, 杨素华, 罗兴钧, 彭玉兵. 求解第一类Fredholm积分方程的多层迭代算法[J]. 计算数学, 2013, 35(3): 225-238.
[11] 罗兴钧, 陈维君, 范林秀, 李繁春. 截断策略下求解第一类积分方程离散的DSM方法[J]. 计算数学, 2012, 34(2): 139-152.
[12] 罗兴钧, 李繁春, 杨素华. 最优投影策略下解病态积分方程的快速迭代算法[J]. 计算数学, 2011, 33(1): 1-14.
阅读次数
全文


摘要