刘怡, 汪艳秋
刘怡, 汪艳秋. 曲边区域上的多边形网格间断有限元离散及其多重网格算法[J]. 计算数学, 2022, 44(3): 396-421.
Liu Yi, Wang Yanqiu. POLYGONAL DISCONTINUOUS GALERKIN METHODS ON CURVED REGIONS AND ITS MULTIGRID PRECONDITIONER[J]. Mathematica Numerica Sinica, 2022, 44(3): 396-421.
Liu Yi, Wang Yanqiu
MR(2010)主题分类:
分享此文:
[1] Blair J. Bounds for the change in the solutions of second order elliptic PDE's when the boundary is perturbed[J]. SIAM Journal on Applied Mathematics, 1973, 24(3):277-285. [2] Strang G, Berger A E. The change in solution due to change in domain[C]//Partial differential equations. 1973:199-205. [3] Thomée V. Polygonal domain approximation in Dirichlet's problem[J]. IMA Journal of Applied Mathematics, 1973, 11(1):33-44. [4] Ergatoudis I, Irons B, Zienkiewicz O. Curved, isoparametric, quadrilateral elements for finite element analysis[J]. International Journal of Solids and Structures, 1968, 4(1):31-42. [5] Lenoir M. Optimal isoparametric finite elements and error estimates for domains involving curved boundaries[J]. SIAM Journal on Numerical Analysis, 1986, 23(3):562-580. [6] Cottrell J A, HUGHES T J, BAZILEVS Y. Isogeometric analysis:toward integration of CAD and FEA[M].[S.l.]:John Wiley&Sons, 2009. [7] Hughes T J, Cottrell J A, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41):4135-4195. [8] Da Veiga L B, Russo A, Vacca G. The virtual element method with curved edges[J]. ESAIM:Mathematical Modelling and Numerical Analysis, 2019, 53(2):375-404. [9] Cockburn B, Solano M. Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains[J]. SIAM Journal on Scientific Computing, 2012, 34(1):A497-A519. [10] Cheung J, Perego M, Bochev P, et al. Optimally accurate higher-order finite element methods for polytopial approximations of domains with smooth boundaries[J]. Mathematics of Computation, 2019, 88(319):2187-2219. [11] 叶朵.曲边区域上的内罚间断有限元方法[J].硕士论文南京师范大学数学科学学院2020. [12] Reed W H, Hill T. Triangular mesh methods for the neutron transport equation[J]. Los Alamos Report LA-UR-73-479, 1973. [13] Arnold D N. An interior penalty finite element method with discontinuous elements[J]. SIAM Journal on Numerical Analysis, 1982, 19(4):742-760. [14] Arnold D N, Brezzi F, Cockburn B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM Journal on Numerical Analysis, 2002, 39(5):1749-1779. [15] Cangiani A, Georgoulis E H, Houston P. hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes[J]. Mathematical Models and Methods in Applied Sciences, 2014, 24(10):2009-2041. [16] Gopalakrishnan J, Kanschat G. A multilevel discontinuous Galerkin method[J]. Numerische Mathematik, 2003, 95(3):527-550. [17] Brenner S C, Zhao J. Convergence of multigrid algorithms for interior penalty methods[J]. Applied Numerical Analysis&Computational Mathematics, 2005, 2(1):3-18. [18] Antonietti P F, Houston P, Hu X, et al. Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes[J]. Calcolo, 2017, 54(4):1169-1198. [19] Antonietti P F, Pennesi G. V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes[J]. Journal of Scientific Computing, 2019, 78(1):625-652. [20] Mu L, Wang X, Wang Y. Shape regularity conditions for polygonal/polyhedral meshes, exemplified in a discontinuous Galerkin discretization[J]. Numerical Methods for Partial Differential Equations, 2015, 31(1):308-325. [21] Adams R A, Fournier J J. Sobolev spaces[M].[S.l.]:Elsevier, 2003. [22] Brenner S, Scott R. The mathematical theory of finite element methods:Vol 15[M].[S.l.]:Springer Science&Business Media, 2007. [23] Bramble J H, King J T. A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries[J]. Mathematics of Computation, 1994, 63(207):1-17. [24] Brenner S C. Poincaré-Friedrichs inequalities for piecewise H1 functions[J]. SIAM Journal on Numerical Analysis, 2003, 41(1):306-324. [25] Bramble J H, Pasciak J E, Xu J. The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms[J]. Mathematics of Computation, 1991, 56(193):1-34. [26] Bramble J H, Pasciak J E. New convergence estimates for multigrid algorithms[J]. Mathematics of Computation, 1987, 49(180):311-329. [27] Bramble J H, Pasciak J E. The analysis of smoothers for multigrid algorithms[J]. Mathematics of Computation, 1992, 58(198):467-488. |
[1] | 岳晶岩, 袁光伟, 盛志强. 多边形网格上扩散方程新的单调格式[J]. 计算数学, 2015, 37(3): 316-336. |
[2] | 祝鹏, 尹云辉, 杨宇博. 奇异摄动问题内罚间断有限方法的最优阶一致收敛性分析[J]. 计算数学, 2013, 35(3): 323-336. |
[3] | 张铁, 李铮. 一阶双曲问题间断有限元的后验误差分析[J]. 计算数学, 2012, 34(2): 215-224. |
[4] | 张铁, 冯男, 史大涛. 求解椭圆边值问题惩罚形式的间断有限元方法[J]. 计算数学, 2010, 32(3): 275-284. |
[5] | 莫则尧,沈隆钧. 二维三温热传导方程的并行自适应多重网格算法求解[J]. 计算数学, 2004, 26(3): 337-350. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||