• 论文 • 上一篇    下一篇

曲边区域上的多边形网格间断有限元离散及其多重网格算法

刘怡, 汪艳秋   

  1. 南京师范大学数学科学学院, 南京 210023
  • 收稿日期:2021-03-24 出版日期:2022-07-14 发布日期:2022-08-03

刘怡, 汪艳秋. 曲边区域上的多边形网格间断有限元离散及其多重网格算法[J]. 计算数学, 2022, 44(3): 396-421.

Liu Yi, Wang Yanqiu. POLYGONAL DISCONTINUOUS GALERKIN METHODS ON CURVED REGIONS AND ITS MULTIGRID PRECONDITIONER[J]. Mathematica Numerica Sinica, 2022, 44(3): 396-421.

POLYGONAL DISCONTINUOUS GALERKIN METHODS ON CURVED REGIONS AND ITS MULTIGRID PRECONDITIONER

Liu Yi, Wang Yanqiu   

  1. School of Mathematics Science, Nanjing Normal University, Nanjing 210023, China
  • Received:2021-03-24 Online:2022-07-14 Published:2022-08-03
本文利用多边形网格上的间断有限元方法离散二阶椭圆方程,在曲边区域上,采用多条直短边逼近曲边的以直代曲的策略,实现了高阶元在能量范数下的最优收敛.本文还将这一方法用于带曲边界面问题的求解,同样得到高阶元的最优收敛.此外我们还设计并分析了这一方法的\linebreakW-cycle和Variable V-cycle多重网格预条件方法,证明当光滑次数足够多时,多重网格预条件算法一致收敛.最后给出了数值算例,证实该算法的可行性并验证了理论分析的结果.
The main purpose of this paper is to study the discontinuous Galerkin discretization of second-order elliptic partial differential equations on curved regions. We use multiple short edges to approximate the curved boundary and achieve the optimal convergence order in H1 norm for high-order elements. This method is also applied to the interface problem with curved interfaces and obtains the optimal convergence of high-order elements. Furthermore, we prove that the W-cycle and V-cycle multigrid preconditioners converge uniformly provided that the number of smoothing is sufficiently large. Finally, numerical results are presented to verify the correctness of the theoretical results.

MR(2010)主题分类: 

()
[1] Blair J. Bounds for the change in the solutions of second order elliptic PDE's when the boundary is perturbed[J]. SIAM Journal on Applied Mathematics, 1973, 24(3):277-285.
[2] Strang G, Berger A E. The change in solution due to change in domain[C]//Partial differential equations. 1973:199-205.
[3] Thomée V. Polygonal domain approximation in Dirichlet's problem[J]. IMA Journal of Applied Mathematics, 1973, 11(1):33-44.
[4] Ergatoudis I, Irons B, Zienkiewicz O. Curved, isoparametric, quadrilateral elements for finite element analysis[J]. International Journal of Solids and Structures, 1968, 4(1):31-42.
[5] Lenoir M. Optimal isoparametric finite elements and error estimates for domains involving curved boundaries[J]. SIAM Journal on Numerical Analysis, 1986, 23(3):562-580.
[6] Cottrell J A, HUGHES T J, BAZILEVS Y. Isogeometric analysis:toward integration of CAD and FEA[M].[S.l.]:John Wiley&Sons, 2009.
[7] Hughes T J, Cottrell J A, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41):4135-4195.
[8] Da Veiga L B, Russo A, Vacca G. The virtual element method with curved edges[J]. ESAIM:Mathematical Modelling and Numerical Analysis, 2019, 53(2):375-404.
[9] Cockburn B, Solano M. Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains[J]. SIAM Journal on Scientific Computing, 2012, 34(1):A497-A519.
[10] Cheung J, Perego M, Bochev P, et al. Optimally accurate higher-order finite element methods for polytopial approximations of domains with smooth boundaries[J]. Mathematics of Computation, 2019, 88(319):2187-2219.
[11] 叶朵.曲边区域上的内罚间断有限元方法[J].硕士论文南京师范大学数学科学学院2020.
[12] Reed W H, Hill T. Triangular mesh methods for the neutron transport equation[J]. Los Alamos Report LA-UR-73-479, 1973.
[13] Arnold D N. An interior penalty finite element method with discontinuous elements[J]. SIAM Journal on Numerical Analysis, 1982, 19(4):742-760.
[14] Arnold D N, Brezzi F, Cockburn B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM Journal on Numerical Analysis, 2002, 39(5):1749-1779.
[15] Cangiani A, Georgoulis E H, Houston P. hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes[J]. Mathematical Models and Methods in Applied Sciences, 2014, 24(10):2009-2041.
[16] Gopalakrishnan J, Kanschat G. A multilevel discontinuous Galerkin method[J]. Numerische Mathematik, 2003, 95(3):527-550.
[17] Brenner S C, Zhao J. Convergence of multigrid algorithms for interior penalty methods[J]. Applied Numerical Analysis&Computational Mathematics, 2005, 2(1):3-18.
[18] Antonietti P F, Houston P, Hu X, et al. Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes[J]. Calcolo, 2017, 54(4):1169-1198.
[19] Antonietti P F, Pennesi G. V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes[J]. Journal of Scientific Computing, 2019, 78(1):625-652.
[20] Mu L, Wang X, Wang Y. Shape regularity conditions for polygonal/polyhedral meshes, exemplified in a discontinuous Galerkin discretization[J]. Numerical Methods for Partial Differential Equations, 2015, 31(1):308-325.
[21] Adams R A, Fournier J J. Sobolev spaces[M].[S.l.]:Elsevier, 2003.
[22] Brenner S, Scott R. The mathematical theory of finite element methods:Vol 15[M].[S.l.]:Springer Science&Business Media, 2007.
[23] Bramble J H, King J T. A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries[J]. Mathematics of Computation, 1994, 63(207):1-17.
[24] Brenner S C. Poincaré-Friedrichs inequalities for piecewise H1 functions[J]. SIAM Journal on Numerical Analysis, 2003, 41(1):306-324.
[25] Bramble J H, Pasciak J E, Xu J. The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms[J]. Mathematics of Computation, 1991, 56(193):1-34.
[26] Bramble J H, Pasciak J E. New convergence estimates for multigrid algorithms[J]. Mathematics of Computation, 1987, 49(180):311-329.
[27] Bramble J H, Pasciak J E. The analysis of smoothers for multigrid algorithms[J]. Mathematics of Computation, 1992, 58(198):467-488.
[1] 岳晶岩, 袁光伟, 盛志强. 多边形网格上扩散方程新的单调格式[J]. 计算数学, 2015, 37(3): 316-336.
[2] 祝鹏, 尹云辉, 杨宇博. 奇异摄动问题内罚间断有限方法的最优阶一致收敛性分析[J]. 计算数学, 2013, 35(3): 323-336.
[3] 张铁, 李铮. 一阶双曲问题间断有限元的后验误差分析[J]. 计算数学, 2012, 34(2): 215-224.
[4] 张铁, 冯男, 史大涛. 求解椭圆边值问题惩罚形式的间断有限元方法[J]. 计算数学, 2010, 32(3): 275-284.
[5] 莫则尧,沈隆钧. 二维三温热传导方程的并行自适应多重网格算法求解[J]. 计算数学, 2004, 26(3): 337-350.
阅读次数
全文


摘要