杨学敏, 牛晶, 姚春华
杨学敏, 牛晶, 姚春华. 椭圆型界面问题的破裂再生核方法[J]. 计算数学, 2022, 44(2): 217-232.
Yang Xuemin, Niu Jing, Yao Chunhua. BROKEN REPRODUCING KERNEL METHOD FOR ELLIPTIC TYPE INTERFACE PROBLEMS[J]. Mathematica Numerica Sinica, 2022, 44(2): 217-232.
Yang Xuemin, Niu Jing, Yao Chunhua
MR(2010)主题分类:
分享此文:
[1] Tang B Q, Li X F. Solution of a class of Volterra integral equations with singular and weakly singular kernels[J]. Applied Mathematics and Computation, 2007, 199(2):406-413. [2] Misra J C, Choudhury K R. An analysis of the flow of blood through thick-walled vessels, considering the effect of tethering[J]. Rheologica Acta, 1984, 23(5):548-555. [3]张志娟.具有间断系数扩散方程的局部间断Galerkin方法[D].中国工程物理研究院,2009. [4] Li F Q, Zou W L. Nonlinear elliptic boundary value problem with equivalued surface in a domain with thin layer[J]. Nonlinear Differential Equations and Applications NoDEA, 2010, 17(6):729- 755. [5]王秋亮.几类界面问题的非拟合有限元方法分析[D].南京师范大学,2015. [6] Aitbayev R. Existence and uniqueness for a two-point interface boundary value problem[J]. Electronic Journal of Differential Equations, 2013, 2013(242):1-12. [7] Dryja M, Galvis J, Sarkis M. BDDC methods for discontinuous Galerkin discretization of elliptic problems[J]. Journal of Complexity, 2007, 23(4):715-739. [8] Ramière I. Convergence analysis of the Q 1-finite element method for elliptic problems with nonboundary-fitted meshes[J]. International Journal for Numerical Methods in Engineering, 2008, 75(9):1007-1052. [9] Guyomarc'h G, Lee CO, Jeon K. A discontinuous Galerkin methods for elliptic interface problems with application to eletroporation[J]. Communications in Numerical Methods in Engineering, 2009, 25(10):991-1008. [10] Huynh L N T, Nguyen N C, Peraire J, Khoo B C. A high-order hybridizable discontinuous Galerkin method for elliptic interface problems[J]. International Journal for Numerical Methods in Engineering, 2013, 93(2):183-200. [11] Guzmán J, Sánchez M, Sarkis M. On the accuracy of finite element approximations to a class of interface problems[J]. Mathematics of Computation, 2015, 85(301):2071-2098. [12] He X. Lin T. Lin Y. Immersed finite element methods for elliptic interface problems with nonhomogeneous jump conditions[J]. International journal of numerical analysis and modeling, 2011, 8(2):284-301. [13] Cao W X, Zhang X, Zhang Z M. Superconvergence of immersed finite element methods for interface problems[J]. Advances in Computational Mathematics, 2017, 43(4):795-821. [14]张荣培, 刘佳.杂交混合有限元方法求解二维椭圆界面问题[J]. 辽宁石油化工大学学报, 2015, 35(05):68——72. [15] Bornemann F, Deuflhard P. The cascadic multigrid method for elliptic problems[J]. Numerische Mathematik, 1996, 75:135-152. [16] 贾学良, 李郴良.求解椭圆型界面问题的新瀑布型多重网格法[J]. 桂林电子科技大学学报, 2017, 37(04):341——344. [17] Romero J, Plotkin E I, Swamy M N S. Reproducing kernels and the use of root loci of specific functions in the recovery of signals from nonuniform samples[J]. Signal Processing, 1996, 49(1):11-23. [18] Xian J, Luo S P, Lin W. Weighted sampling and signal reconstruction in spline subspaces[J]. Signal Processing, 2005, 86(2):331-340. [19] Antoniou I, Gustafson K. Wavelets and stochastic processes[J]. Mathematics and Computers in Simulation, 1999, 49(1):81-104. [20] Pontil M. A note on different covering numbers in learning theory[J]. Journal of Complexity, 2003, 19(5):665-671. [21] Mendelson S. Learnability in Hilbert spaces with reproducing kernels[J]. Journal of Complexity, 2002, 18(1):152-170. [22] Jiang W, Cui M G, Lin Y Z. Anti-periodic solutions for Rayleigh-type equations via the reproducing kernel Hilbert space method[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 15(7):1754-1758. [23] [1]Jiang W, Cui M G. Solving nonlinear singular pseudoparabolic equations with nonlocal mixed conditions in the reproducing kernel space[J]. International Journal of Computer Mathematics, 2010, 87(15):3430-3442. [24] Bushnaq S, Momani S, Zhou Y. A reproducing kernel Hilbert space method for solving Integro Differential equations of fractional order[J]. Journal of Optimization Theory and Applications, 2013, 156(1):96-105. [25] Geng F Z, Qian S P. Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers[J]. Applied Mathematics Letters, 2013, 26(10):998-1004. [26] Li X Y, Wu B Y. Error estimation for the reproducing kernel method to solve linear boundary value problems[J]. Journal of Computational and Applied Mathematics, 2013, 243:10-15. [27] Niu J, Xu M Q, Lin Y Z. An efficient method for fractional nonlinear differential equations by quasi-Newton s method and simplified reproducing kernel method[J], Mathematical Methods in the Applied Sciences, 2018, 41(1):5-14. [28] Niu J, Xu M Q, Lin Y Z, Xue Q. Numerical solution of nonlinear singular boundary value problems[J]. Journal of Computational and Applied Mathematics, 2018, 331:42-51. [29] Xu M Q, Lin Y Z. Simplified reproducing kernel method for fractional differential equations with delay[J]. Applied Mathematics Letters, 2016, 52:156-161. [30] Xu M Q, Lin Y Z. Homotopy deform method for reproducing kernel space for nonlinear boundary value problems[J]. Pramana, 2016, 87(4). [31] Jia Y T, Xu M Q, Lin Y Z. A numerical solution for variable order fractional functional differential equation[J]. Applied Mathematics Letters, 2017, 64:125-130. [32] Zhao Z H, Lin Y Z, Niu J. Convergence order of the reproducing kernel method for solving boundary value problems[J]. Mathematical Modelling and Analysis, 2016, 21(4):466-477. [33] Cui M G, Geng F Z. Solving singular two-point boundary value problem in reproducing kernel space[J]. Journal of Computational and Applied Mathematics, 2006, 205(1):6-15. [34] Cui M G, Lin Y Z. Nonlinear Numerical Analysis in Reproducing Kernel Space[M]. Nova Science Publishers, Inc, 2009. [35] Zhang Q, Weng Z F, Ji H F, Zhang B. Error estimates for an augmented method for onedimensional elliptic interface problems[J]. Advances in Difference Equations, 2018, 2018(1):1-16. [36] 吴勃英, 林迎珍. 应用型再生核空间[M]. 科学出版社, 2012. |
[1] | 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443. |
[2] | 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366. |
[3] | 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456. |
[4] | 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206. |
[5] | 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90. |
[6] | 陈圣杰, 戴彧虹, 徐凤敏. 稀疏线性规划研究[J]. 计算数学, 2018, 40(4): 339-353. |
[7] | 古振东, 孙丽英. 一类弱奇性Volterra积分微分方程的级数展开数值解法[J]. 计算数学, 2017, 39(4): 351-362. |
[8] | 刘丽华, 马昌凤, 唐嘉. 求解广义鞍点问题的一个新的类SOR算法[J]. 计算数学, 2016, 38(1): 83-95. |
[9] | 黄娜, 马昌凤, 谢亚君. 求解非对称代数Riccati 方程几个新的预估-校正法[J]. 计算数学, 2013, 35(4): 401-418. |
[10] | 任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322. |
[11] | 陈绍春, 梁冠男, 陈红如. Zienkiewicz元插值的非各向异性估计[J]. 计算数学, 2013, 35(3): 271-274. |
[12] | 张亚东, 石东洋. 各向异性网格下抛物方程一个新的非协调混合元收敛性分析[J]. 计算数学, 2013, 35(2): 171-180. |
[13] | 王淑燕, 陈焕贞. 基于Crouzeix-Raviart元的界面浸入有限元方法及其收敛性分析[J]. 计算数学, 2012, 34(2): 125-138. |
[14] | 陈争, 马昌凤. 求解非线性互补问题一个新的 Jacobian 光滑化方法[J]. 计算数学, 2010, 32(4): 361-372. |
[15] | 来翔, 袁益让. 一类三维拟线性双曲型方程交替方向有限元法[J]. 计算数学, 2010, 32(1): 15-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||