• 论文 • 上一篇    下一篇

关于非Hermitian正定线性代数方程组的超松弛HSS方法

潘春平   

  1. 浙江工业职业技术学院, 绍兴 312000
  • 收稿日期:2021-01-11 出版日期:2022-11-14 发布日期:2022-11-08
  • 基金资助:
    工业设计创新团队建设项目资助.

潘春平. 关于非Hermitian正定线性代数方程组的超松弛HSS方法[J]. 计算数学, 2022, 44(4): 481-495.

Pan Chunping. ON THE OVER RELAXATION HSS METHOD FOR NON HERMITIAN POSITIVE DEFINITE LINEAR ALGEBRAIC EQUATIONS[J]. Mathematica Numerica Sinica, 2022, 44(4): 481-495.

ON THE OVER RELAXATION HSS METHOD FOR NON HERMITIAN POSITIVE DEFINITE LINEAR ALGEBRAIC EQUATIONS

Pan Chunping   

  1. Zhejiang Industry Polytechnic College, shaoxing, 312000, China
  • Received:2021-01-11 Online:2022-11-14 Published:2022-11-08
本文针对求解大型稀疏非Hermitian正定线性方程组的HSS迭代方法,利用迭代法的松弛技术进行加速,提出了一种具有三个参数的超松弛HSS方法(SAHSS)和不精确的SAHSS方法(ISAHSS),它采用CG和一些Krylov子空间方法作为其内部过程,并研究了SAHSS和ISAHSS方法的收敛性.数值例子验证了新方法的有效性.
In this paper, efficient iterative methods for the large sparse non-Hermitian positive definite systems of linear equations, based on the Hermitian and skew-Hermitian splitting of the coefficient matrix, are studied. Based on the relaxation technique of iterative method, An over relaxed Hermitian/skew-Hermitian (SAHSS)iteration method with three parameters and its inexact version, the inexact Hermitian/skew-Hermitian (ISAHSS) iteration are proposed, which employs CG and some Krylov subspace methods as its inner process. The convergence of SAHSS and ISAHSS methods are studied. Numerical examples show the effectiveness of the new methods.

MR(2010)主题分类: 

()
[1] Saad Y, Schultz M.H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput, 1986, 7:856-869.
[2] Young D M. Iterative Solutions of Large Linear Systems[M]. New York:Academic Press 1971.
[3] Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl, 2003, 24:603-626.
[4] Benzi M, Golub G H. A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl, 2004, 26:20-41.
[5] Bai Z Z, Golub G H, Pan J Y. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. Numer Math, 2004, 98:1-32.
[6] Bai Z Z, Golub G H, Ng M K. On successive overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations[J]. Numer Linear Algebra Appl, 2007, 14:319-335.
[7] Bai Z Z, Golub G H, Li C K. Convergence properties of preconditioned Hermitian and skewHermitian splitting methods for non-Hermitian positive semidefinite matrices[J].Math.Comput, 2007, 76:287-298.
[8] Bai Z Z, Golub G H, Li C K. Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices[J]. SIAM J Sci Comput, 2006, 28:583-603.
[9] Li L, Huang T Z, Liu X P.Modified Hermitian and skew-Hermitian splitting methods for nonHermitian positive-definite linear systems[J].Numer Linear Algebra Appl, 2007, 14:217-235.
[10] Bai Z Z, Golub G H, Lu L Z, Yin J F.Block triangular and skew-Hermitian splitting methods for positive-definite linear systems[J]. SIAM J Sci Comput, 2005, 26:844-863.
[11] Bai Z Z, Golub G H. Accelerated Hermitian and skew-Hermitian splitting methods for saddle point problems[J]. IMA J Numer Anal 2007, 27:1-23.
[12] Li L, Huang T Z, Liu X P.Asymmetric Hermitian and skew-Hermitian splitting methods for positive definite linear systems[J]. Compu. Math. Appl, 2007, 54:147-159.
[13] Bai Z Z. Optimal parameters in the HSS-like methods for saddle-point problems[J]. Numer Linear Algebra Appl, 2009, 16:447-479.
[14]潘春平.关于鞍点问题的预处理HSS-SOR交替分裂迭代方法[J]. 高校应用数学学报, 2012, 27(4):456-464.
[15]潘春平.鞍点问题的预处理HSS-SOR二级分裂迭代方法[J]. 高校应用数学学报, 2013, 28(3):367-378.
[16]潘春平, 王红玉, 曹文方. 非Hermitian正定线性方程组的外推的HSS迭代方法[J]. 计算数学, 2019, 41(1):52-65.
[1] 朱禹, 陈芳. 离散空间分数阶非线性薛定谔方程的MHSS型迭代方法[J]. 计算数学, 2022, 44(3): 368-378.
[2] 宋珊珊, 李郴良. 求解张量互补问题的一类光滑模系矩阵迭代方法[J]. 计算数学, 2022, 44(2): 178-186.
[3] 邵新慧, 祁猛. 求解M-张量方程的两种新型算法[J]. 计算数学, 2022, 44(2): 206-216.
[4] 李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117.
[5] 吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236.
[6] 戴平凡, 李继成, 白建超. 解线性互补问题的预处理加速模Gauss-Seidel迭代方法[J]. 计算数学, 2019, 41(3): 308-319.
[7] 潘春平, 王红玉, 曹文方. 非Hermitian正定线性方程组的外推的HSS迭代方法[J]. 计算数学, 2019, 41(1): 52-65.
[8] 曾闽丽, 张国凤. 速度追踪问题中鞍点系统的新分裂迭代[J]. 计算数学, 2016, 38(4): 354-371.
[9] 张凯院, 耿小姣, 聂玉峰. 一类Riccati方程组对称自反解的两种迭代算法[J]. 计算数学, 2016, 38(2): 161-170.
[10] 潘春平. 关于Katz指标的二级分裂迭代方法[J]. 计算数学, 2015, 37(4): 390-400.
[11] 潘春平 . 关于PageRank的广义二级分裂迭代方法[J]. 计算数学, 2014, 36(4): 427-436.
[12] 潘春平. 关于鞍点问题的广义预处理HSS-SOR交替分裂迭代方法[J]. 计算数学, 2013, 35(4): 353-364.
[13] 廖安平, 段雪峰, 沈金荣. 矩阵方程X+A^{*}X^{-q}A=Q(q\geq 1)的Hermitian正定解[J]. 计算数学, 2008, 30(4): 369-378.
[14] 苏京勋,刘继军,. 一类抛物型方程系数反问题的分裂算法[J]. 计算数学, 2008, 30(1): 99-12.
[15] 高东杰,张玉海,. 矩阵方程X-A~*X~qA=Q(q>0)的Hermite正定解[J]. 计算数学, 2007, 29(1): 73-80.
阅读次数
全文


摘要