• 论文 • 上一篇    下一篇

多项Caputo分数阶随机微分方程的Euler-Maruyama方法

霍振阳, 张静娜, 黄健飞   

  1. 扬州大学数学科学学院, 扬州 225002
  • 收稿日期:2020-12-15 出版日期:2022-07-14 发布日期:2022-08-03
  • 通讯作者: 黄健飞,Email:jfhuang@lsec.cc.ac.cn.
  • 基金资助:
    国家自然科学基金项目(11701502,11871065)和江苏省自然科学基金项目(BK20201427)资助.

霍振阳, 张静娜, 黄健飞. 多项Caputo分数阶随机微分方程的Euler-Maruyama方法[J]. 计算数学, 2022, 44(3): 354-367.

Huo Zhengyang, Zhang Jingna, Huang Jianfei. EULER-MARUYAMA SCHEME FOR MULTI-TERM CAPUTO FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS[J]. Mathematica Numerica Sinica, 2022, 44(3): 354-367.

EULER-MARUYAMA SCHEME FOR MULTI-TERM CAPUTO FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS

Huo Zhengyang, Zhang Jingna, Huang Jianfei   

  1. College of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China
  • Received:2020-12-15 Online:2022-07-14 Published:2022-08-03
本文主要研究了一类多项Caputo分数阶随机微分方程的Euler-Maruyama (EM)方法,并证明了其强收敛性.具体地,我们首先构造了求解多项Caputo分数阶随机微分方程初值问题的EM方法,然后证明分数阶导数的指标满足$\frac{1}{2}<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}<1$时,该方法是$\alpha_{m}-\alpha_{m-1}$阶强收敛的.文末的数值试验验证了理论结果的正确性.
In this paper, we study the Euler-Maruyama (EM) method for a class of multi-term Caputo fractional stochastic differential equations, and prove its strong convergence. Specifically, we first construct the EM method for the initial value problem of multi-term Caputo fractional stochastic differential equations, and then we prove that the method is $\alpha_{m}-\alpha_{m-1}$ order strong convergence, where $\alpha_{i},i=1,\cdots,m$, is the fractional order with $\frac{1}{2}<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}<1$. Finally, numerical experiments are given to support the theoretical results of our EM method.

MR(2010)主题分类: 

()
[1] 刘发旺,庄平辉,刘青霞.分数阶偏微分方程数值方法及其应用[M].北京:科学出版社, 2015, 393-452.
[2] 薛定宇.分数阶微积分学与分数阶控制[M].北京:科学出版社, 2018, 243-268.
[3] Torvik P J, Bagley R L. On the appearance of the fractional derivatives in the behavior of real materials[J]. Journal of Applied Mechanics, 1984, 51:294-298.
[4] Diethelm K, Ford N J. Numerical solution of the Bagley-Torvik equation[J]. BIT:Numerical Mathematics, 1984, 42:490-507.
[5] Basset A B. On the descent of a sphere in a viscous liquid[J]. Pure and Applied Mathematics Quarterly, 1910, 41:369-381.
[6] Edwards J T, Ford N J, Simpson A C. The numerical solution of linear multi-term fractional differential equations:Systems of equations[J]. Journal of Computational and Applied Mathematics, 2002, 148:401-418.
[7] Kukla S, Siedlecka U. A numerical-analytical solution of multi-term fractional-order differential equations[J]. Mathematics Methods in the Applied Science, 2020, 43:4883-4894.
[8] Li L, Liu J G, Lu J F. Fractional stochastic differential equations satisfying fluctuation-dissipation theorem[J]. Journal of Statistical Physics, 2017, 169:316-339.
[9] 毛文亭,张维,王文强.一类带乘性噪声随机分数阶微分方程数值方法的弱收敛性与弱稳定性[J].计算数学, 2018, 39(3):161-171.
[10] 王文强,孙晓莉.线性随机分数阶微分方程Euler方法的弱收敛性与弱稳定性[J].计算数学, 2014, 36(2):195-204.
[11] Doan T S, Huong P T, Kloeden P E, Vu A M. Euler-Maruyama scheme for Caputo stochastic fractional differential equations[J]. Journal of Computational and Applied Mathematics, 2020, 380:112989.
[12] Anh P T, Doan T S, Huong P T. A variation of constant formula for Caputo fractional stochastic differential equations[J]. Statistics and Probability Letters, 2019, 145:351-358.
[13] Diethelm K. The analysis of fractional differential equations[M]. Berlin:Spinger, 2010, 170-171.
[14] Zhang J N, Gong H B, Arshad S, Huang J F. A superlinear numerical scheme for multi-term fractional nonlinear ordinary differential equations[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2020, 11(2):2050015.
[1] 岳超. 高阶分裂步(θ1,θ2,θ3)方法的强收敛性[J]. 计算数学, 2019, 41(2): 126-155.
[2] 张维, 王文强. 随机微分方程改进的分裂步单支θ方法的强收敛性[J]. 计算数学, 2019, 41(1): 12-36.
[3] 简金宝, 唐菲, 黎健玲, 唐春明. 无约束极大极小问题的广义梯度投影算法[J]. 计算数学, 2013, 35(4): 385-392.
[4] 胡鹏, 黄乘明. 线性随机延迟积分微分方程Euler-Maruyama方法的稳定性[J]. 计算数学, 2010, 32(1): 105-112.
[5] 王文强,黄山,李寿佛,. 非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性[J]. 计算数学, 2007, 29(2): 217-224.
阅读次数
全文


摘要