包学忠, 胡琳, 产蔼宁
包学忠, 胡琳, 产蔼宁. 线性随机变时滞微分方程指数Euler方法的收敛性和稳定性[J]. 计算数学, 2022, 44(3): 339-353.
Bao Xuezhong, Hu Lin, Chan Aining. CONVERGENCE AND STABILITY OF EXPONENTIAL EULER METHOD FOR LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS WITH VARIABLE DELAY[J]. Mathematica Numerica Sinica, 2022, 44(3): 339-353.
Bao Xuezhong, Hu Lin, Chan Aining
MR(2010)主题分类:
分享此文:
[1] Zhang H M, Gan S Q, Hu L. The split-step backward Euler method for linear stochastic delay differential equations[J]. Journal of Computational and Applied Mathematics, 2009, 225:558-568. [2] Huang C M. Exponential mean square stabiity of numerical methods for systems of stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2012, 236:4016-4026. [3] 张玲,刘国清.线性随机延迟微分方程指数Euler方法的收敛性[J].哈尔滨师范大学自然科学学报, 2018, 34(2):12-15. [4] Lu Y L, Song M H, Liu M Z. Convergence and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments[J]. Journal of Computational and Applied Mathematics, 2017, 317:55-71. [5] Yue C. Exponential mean-square stabiity of the improved split-step theta methods for nonautonomous stochastic differential equations[J]. Science China Mathematics, 2017, 60(4):735-744. [6] 张维,王文强.随机延迟微分方程分裂步单支$\theta$方法的强收敛性}[J].数值计算与计算机应用, 2018, 39(2):135-149. [7] Wang P, Li Y. Split-step forward methods for stochastic differential equations[J]. Journal of Computtational and Applied Mathematics, 2010, 223:2641-2651. [8] 张玲,张渤雨,李宁.分段连续性随机延迟微分方程指数Euler方法的收敛性}[J].哈尔滨师范大学自然科学学报, 2015, 31(6):28-31. [9] Cao W R, Hao P, Zhang Z Q. Split-step θ-method for stochastic delay differential equations[J]. Applied Numerical Mathematics, 2014, 76:19-33. [10] 彭威,朱梦姣,王文强.一类中立型随机延迟微分方程分裂步$\theta$方法的均方指数稳定性}[J].数值计算与计算机应用, 2019, 40(4):310-326. [11] Li Q Y, Gan S Q, Wang X J. Compensated stochastic theta methods for stochastic differential delay equations with jumps[J]. International Journal of Computer Mathematics, 2013, 90:1057-1071. [12] 滕灵芝,张浩敏.中立型随机延迟微分方程的分步$\theta$-方法[J].黑龙江大学自然科学学报, 2018, 35(01):32-42. [13] 王秋实,兰光强.中立型时滞随机微分方程数值解的指数稳定性}[J].北京化工大学学报(自然科学版), 2019,46(2):113-117. [14] Wang X J, Gan S Q. The improved split-step backward Euler method for stochastic differential delay equations[J]. International Journal of Computer Methematics, 2011, 11(88):2359-2378. [15] Du Y, Mei C L. A compensated numerical method for solving stochastic differential equations with variable delay and random jump magnitudes[J]. Mathematical Problems in Engineering, 2015, 2015:1-11. [16] Mao W, Convergence of numerical solutions for variable delay differential equations driven by Poisson random jump measure[J]. Applied Mathematics and Computation, 2009, 212:409-417. [17] Zhang C J, Xie Y. Backward Euler-Maruyama method applied to nonlinear hybrid stochastic differential equations with time-variable delay[J]. Science China Mathematics, 2019, 62(3):597-616. [18] Mohamad S, Gopalsamy K. Continuous and discrete Halanay-type inequalities[J]. Bulletin of the Australian Mathematical Society, 2000, 61(3):371-385. 4026. |
[1] | 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321. |
[2] | 谭英贤, 甘四清, 王小捷. 随机延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2011, 33(1): 25-36. |
[3] | 张浩敏, 甘四清, 胡琳. 随机比例方程带线性插值的半隐式Euler方法的均方收敛性[J]. 计算数学, 2009, 31(4): 379-392. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||