• 论文 • 上一篇    下一篇

求解张量互补问题的一类光滑模系矩阵迭代方法

宋珊珊, 李郴良   

  1. 桂林电子科技大学数学与计算科学学院, 广西高校数据分析与计算重点实验室, 桂林 541004
  • 收稿日期:2020-08-31 出版日期:2022-05-14 发布日期:2022-05-06
  • 基金资助:
    国家自然科学基金项目(11661027),国家重大仪器专项(61627807)和广西自然科学基金项目(2020GXNSFAA159143)资助.

宋珊珊, 李郴良. 求解张量互补问题的一类光滑模系矩阵迭代方法[J]. 计算数学, 2022, 44(2): 178-186.

Song Shanshan, Li Chenliang. A CLASS OF SMOOTH MODULUS-BASED MATRIX ITERATION METHODS FOR SOLVING TENSOR COMPLEMENTARITY PROBLEM[J]. Mathematica Numerica Sinica, 2022, 44(2): 178-186.

A CLASS OF SMOOTH MODULUS-BASED MATRIX ITERATION METHODS FOR SOLVING TENSOR COMPLEMENTARITY PROBLEM

Song Shanshan, Li Chenliang   

  1. School of Mathematics and Computational Science, Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guilin 541004, China
  • Received:2020-08-31 Online:2022-05-14 Published:2022-05-06
本文提出了求解张量互补问题的一类光滑模系矩阵迭代方法.其基本思想是,先将张量互补问题转化为等价的模系方程组,然后引入一个逼近的光滑函数进行求解.我们分析了算法的收敛性,并通过数值实验验证了所提出算法的有效性.
In this paper, we present a class of smoothing modulus-based matrix iteration methods for solving the tensor complementarity problem. The basic idea is that, we firstly transform the tensor complementarity problem into an equivalent system of modulus-based equations, then introduce an approximated smoothing functions to obtain its approximation solutions. We analyze the convergence of the algorithms and verify the efficiency of the proposed algorithms by numerical experiments.

MR(2010)主题分类: 

()
[1] Bai X L, Huang Z H, Wang Y. Global uniqueness and solvability for tensor complementarity problems[J]. Journal of Optimization Theory and Applications, 2016, 170(1):72-84.
[2] Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2010, 17(6):917-933.
[3] Che M L, Qi L Q, Wei Y M. Positive-definite tensors to nonlinear complementarity problems[J]. Journal of Optimization Theory and Applications, 2016, 168(2):475-487.
[4] Chen B T, Harker P T. A non-interior-point continuation method for linear complementarity problems[J]. SIAM Joural on Matrix Analysis and applications, 1993, 14(4):1168-1190.
[5] Ding W Y, Luo Z Y, Qi L Q. P -tensors, P0-tensors and tensor complementarity problem[J]. Linear Algebra and Its Applications, 2018, 555:336-354.
[6] Du S Q, Zhang L P, Chen C Y, et al. Tensor absolute value equations[J]. Science China (Mathematics), 2018, 61(9):157-172.
[7] Fjedler M, Pták V. On matrices with nonpositive off-diagonaI elements and positive principal minors[J]. Czechoslovak Mathematical Journal, 1962, 12(87):382-400.
[8] Foutayeni Y El, Bouanani H El, Khaladi M. An (m+1)-step iterative method of convergence order (m+2) for linear complementarity problems[J]. Journal of Applied Mathematics and Computing, 2017, 54(1-2):229-242.
[9] Gowda M S, Luo Z Y, Qi L Q, et al. Z-tensors and complementarity problems. arXiv preprint arXiv:1510.07933, 2015.
[10] Guan H B, Li D H. Linearized Methods for Tensor Complementarity Problems[J]. Journal of Optimization Theory and Applications, 2020, 184(3):972-987.
[11] Han L X. A Continuation Method for Tensor Complementarity Problems[J]. Journal of Optimization Theory and Applications, 2019, 180(3):949-963.
[12] Huang B H, Ma C F. Accelerated modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems[J]. Computational & Applied Mathematics, 2018, 37(3):3053-3076.
[13] Huang Z H, Qi L Q. Formulating an n-person noncooperative game as a tensor complementarity problem[J]. Computational Optimization and Applications, 2017, 66(3):557-576.
[14] Huang Z H, Qi L Q. Tensor complementarity problems-part III:Applications[J]. Journal of Optimization Theory and Applications, 2019, 183(3):771-791.
[15] Huang Z H, Suo Y Y, Wang J. On Q-Tensors[J]. Pacific Journal of Optimization, 2020, 16(1):67-86.
[16] Ling L Y, He H J, Ling C. On error bounds of polynomial complementarity problems with structured tensors[J].Optimization, 2018, 67(2):341-358.
[17] Liu D D, Li W, Vong S W. Tensor complementarity problems:the GUS-property and an algorithm[J]. Linear and Multilinear Algebra, 2017, 66(9):1-24.
[18] Luo Z Y, Qi L Q, Xiu N H. The sparsest solutions to Z-tensor complementarity problems[J]. Optimization Letters, 2017, 11(3):471-482.
[19] Mezzadri F, Galligani E. Modulus-based matrix splitting methods for horizontal linear complementarity problems[J]. Numerical Algorithms, 2020, 83(1):201-219.
[20] Murty K. Linear Complementarity, Linear and Nonlinear Programming[J]. Heldermann Verlag:Berlin, 1988.
[21] Qi L, Eigenvalues of a real supersymmetric tensor[J]. Journal Symbolic Computation, 2005, 40(6):1302-1324.
[22] Song Y S, Qi L Q. Properties of some classes of structured tensors[J]. Journal of Optimization Theory and Applications, 2015, 165(3):854-873.
[23] Song Y S, Qi L Q. Tensor complementarity problem and semi-positive tensors[J]. Journal of optimization theory and applications, 2016, 169(3):1069-1078.
[24] Wang X Z, Che M L, Wei Y M. Global uniqueness and solvability of tensor complementarity problems for H+-tensors[J]. Numerical Algorithms, 2020, 84(2):567-590.
[25] Xia Z C, Li C L. Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem[J]. Applied Mathematics and Computation, 2015, 271:34-42.
[26] Xie S L, Li D H, Xu H R. An iterative method for finding the least solution to the tensor complementarity problem[J]. Journal of Optimization Theory and Applications, 2017, 175(1):119-136.
[27] Xu H R, Li D H, Xie S L. An equivalent tensor equation to the tensor complementarity problem with positive semi-definite Z-tensor[J]. Optimization Letters, 2018, 13(4):685-694.
[28] Yu W, Ling C, He H. On the properties of tensor complementarity problems[J]. Pacific Journal of Optimization, 2018, 14(4):675-691.
[29] Zheng M M, Zhang Y, Huang Z H. Global error bounds for the tensor complementarity problem with a P-tensor[J]. Journal of Industrial & Management Optimization, 2019, 15(2):933-946.
[1] 樊梦, 王同科, 常慧宾. 非光滑函数的分数阶插值公式[J]. 计算数学, 2016, 38(2): 212-224.
[2] 贺素香,张立卫. 求解约束优化问题的一个对偶算法[J]. 计算数学, 2001, 23(3): 307-320.
阅读次数
全文


摘要