• 论文 • 上一篇    下一篇

求解一类分块二阶线性方程组的QHSS迭代方法

李天怡, 陈芳   

  1. 北京信息科技大学理学院, 北京 100192
  • 收稿日期:2020-01-02 出版日期:2021-02-15 发布日期:2021-02-04
  • 通讯作者: 陈芳, chenfreesky@126.com
  • 基金资助:
    国家自然科学基金(No.11501038)和北京市教育委员会科技计划项目(Nos.KM201911232010,KM201811232020)资助.

李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117.

Li Tianyi, Chen Fang. QHSS ITERATION METHOD FOR A CLASS OF BLOCK TWO-BY-TWO LINEAR SYSTEMS[J]. Mathematica Numerica Sinica, 2021, 43(1): 110-117.

QHSS ITERATION METHOD FOR A CLASS OF BLOCK TWO-BY-TWO LINEAR SYSTEMS

Li Tianyi, Chen Fang   

  1. School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China
  • Received:2020-01-02 Online:2021-02-15 Published:2021-02-04
本文将QHSS迭代方法运用于求解一类分块二阶线性方程组. 通过适当地放宽QHSS迭代方法的收敛性条件,我们给出了用QHSS迭代方法求解一类分块二阶线性方程组的具体迭代格式,并证明了当系数矩阵中的(1,1)块对称半正定时该QHSS迭代方法的收敛性.我们还用数值实验验证了QHSS迭代方法的可行性和有效性.
We use the QHSS iteration method to solve a class of block two-by-two linear systems. By properly relaxing the convergence conditions of the QHSS iteration method, we give an alternative QHSS iteration scheme for solving the block two-by-two linear systems, and prove that when the (1, 1) block of the coefficient matrix is symmetric and positive semidefinite, this QHSS iteration method is also convergent under certain conditions. We also use the numerical experiments to verify the feasibility and effectiveness of the QHSS iteration method.

MR(2010)主题分类: 

()
[1] Arridag S R. Optical tomography in medical imaging[J]. Inverse Problems, 1999, 15:R41-R93.
[2] Bai Z Z. On SSOR-like preconditioners for non-Hermitian positive definite matrices[J]. Numerical Linear Algebra with Applications, 2016, 23:37-60.
[3] Bai Z Z, Golub G H and Ng M K. Hermitian and skew-Hermitian splitting methods for nonHermitian positive definite linear systems[J]. SIAM Journal on Matrix Analysis and Applications, 2003, 24:603-626.
[4] Bai Z Z, Benzi M and Chen F. Modified HSS iteration methods for a class of complex symmetric linear systems[J]. Computing, 2010, 111:87-93.
[5] Bai Z Z, Benzi M and Chen F. On preconditioned MHSS iteration methods for complex symmetric linear systems[J]. Numerical Algorithms, 2011, 56:297-317.
[6] Bai Z Z, Benzi M, Chen F and Wang Z Q. Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems[J]. IMA Journal of Numerical Analysis, 2013, 33:343-369.
[7] Bai Z Z. Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts[J]. Numerical Linear Algebra with Applications, 2018, e2116:1-19.
[8] Benzi M and Bertaccini D. Block preconditioning of real-valued iterative algorithms for complex linear systems[J]. IMA Journal of Numerical Analysis, 2008, 28:598-618.
[9] Bertaccini D. Efficient preconditioning for sequences of parametric complex symmetric linear systems[J]. Electronic Transactions on Numerical Analysis, 2004, 18:49-64.
[10] Poirier B. Efficient preconditioning scheme for block partitioned matrices with structured sparsity[J]. Numerical Linear Algebra with Applications, 2000, 7:715-726.
[1] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[2] 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118.
[3] 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443.
[4] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[5] 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366.
[6] 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412.
[7] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226.
[8] 袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16.
[9] 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109.
[10] 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471.
[11] 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.
[12] 吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236.
[13] 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50.
[14] 李枝枝, 柯艺芬, 储日升, 张怀. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405.
[15] 戴平凡, 李继成, 白建超. 解线性互补问题的预处理加速模Gauss-Seidel迭代方法[J]. 计算数学, 2019, 41(3): 308-319.
阅读次数
全文


摘要