• 论文 • 上一篇    下一篇

非线性第二类Volterra积分方程的Chebyshev谱配置法

古振东1, 孙丽英2   

  1. 1 广东金融学院金融数学与统计学院, 广州 5105211;
    2 广东金融学院保险学院, 广州 510521
  • 收稿日期:2018-11-05 出版日期:2020-11-15 发布日期:2020-11-15
  • 基金资助:

    广东省自然科学基金项目(2017A030310636,2018A030313236),广东省高性能计算学会开放基金项目(2017060104),中山大学广东省计算科学重点实验室开放基金项目(2016001),广东高校省级重点平台和重大科研项目(2017KTSCX131),广东省教育厅科研项目(2017KTSCX130)资助.

古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.

Gu Zhendong, Sun Liying. CHEBYSHEV SPECTRAL COLLOCATION METHOD FOR NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF THE SECOND KIND[J]. Mathematica Numerica Sinica, 2020, 42(4): 445-456.

CHEBYSHEV SPECTRAL COLLOCATION METHOD FOR NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF THE SECOND KIND

Gu Zhendong1, Sun Liying2   

  1. 1 School of Financial Mathematics&Statistics, Guangdong University of Finance, Guangzhou 510521, China;
    2 School of Insurance, Guangdong University of Finance, Guangzhou 510521, China
  • Received:2018-11-05 Online:2020-11-15 Published:2020-11-15
我们在参考了相关文献的基础上,考察了一类非线性Volterra积分方程的Chebyshev谱配置法.方法中,我们将该类非线性方程转化为两个方程进行数值逼近.我们选择N阶Chebyshev Gauss-Lobatto点作为配置点,对积分项用N阶高斯数值积分公式逼近.收敛性分析结果表明数值误差的收敛阶为N(1/2)-m,其中m是已知函数最高连续导数的阶数.我们也开展数值实验证实这一理论分析结果.
Base on related references, we investigate the Chebyshev spectral collocation method for nonlinear Volterra integral equations of the second kind. The main idea of the presented method is to approximate numerically the new equations which are tranformedfrom the nonlinear Volterra integral equations of the second kind. The collocation points are Chebyshev Gauss-Lobatto points of order N. The integral terms are approximated by Gauss quadrature formula of order N. The provided convergence analysis shows thatthe convergence rate of the numerical errors is N(1/2)-m provided that the given functions are m times continuous differentiable. This theoretical result is confirmed by the provided numerical experiments.

MR(2010)主题分类: 

()
[1] Brauer F, Castillo-Chávez C. Mathematical models in population biology and epidemiology[M]. Springer New York.

[2] Brunner H. Collocation methods for Volterra integral and related functional differential equations[M]. vol. 15, Cambridge University Press, 2004.

[3] Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral methods (fundamental in single domains)[M]. Springer, 2006.

[4] Elnagar G N, Kazemi M. Chebyshev spectral solution of nonlinear volterra-hammerstein integral equations[J]. Journal of Computational and Applied Mathematics, 1996, 76(1-2):147-158.

[5] Gilding B H. A singular nonlinear volterra integral equation[J]. Journal of Integral Equations & Applications, 1993, 5(4):465-502.

[6] Gouyandeh Z, Allahviranloo T, Armand A. Numerical solution of nonlinear volterra-fredholmhammerstein integral equations via tau-collocation method with convergence analysis[J]. Journal of Computational & Applied Mathematics, 2016, 308:435-446.

[7] Ma Y, Huang J, Wang C. Numerical Solutions of Nonlinear Volterra-Fredholm-Hammerstein Integral Equations Using Sinc Nystrom Method[M]. Springer International Publishing, 2017.

[8] Maleknejad K, Hashemizadeh E, Basirat B. Computational method based on bernstein operational matrices for nonlinear volterra-fredholm-hammerstein integral equations[J]. Communications in Nonlinear Science & Numerical Simulation, 2012, 17(1):52-61.

[9] Marzban H R, Tabrizidooz H R, Razzaghi M. A composite collocation method for the nonlinear mixed volterra-fredholm-hammerstein integral equations[J]. Communications in Nonlinear Science & Numerical Simulation, 2011, 16(3):1186-1194.

[10] Parand K, Rad J A. Numerical solution of nonlinear volterra-fredholm-hammerstein integral equations via collocation method based on radial basis functions[J]. Applied Mathematics & Computation, 2012, 218(9):5292-5309.

[11] Unterreiter A. Volterra integral equation models for semiconductor devices[J]. Mathematical Methods in the Applied Sciences, 1996, 19(6):425-450.
[1] 许志强. 相位恢复:理论、模型与算法[J]. 计算数学, 2022, 44(1): 1-18.
[2] 张法勇, 安晓丽. 带五次项的非线性Schrödinger方程的守恒差分格式[J]. 计算数学, 2022, 44(1): 63-70.
[3] 刘嘉诚, 陈先进, 段雅丽, 李昭祥. 改进的PNC方法及其在非线性偏微分方程多解问题中的应用[J]. 计算数学, 2022, 44(1): 119-136.
[4] 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443.
[5] 唐耀宗, 杨庆之. 非线性特征值问题平移对称幂法的收敛率估计[J]. 计算数学, 2021, 43(4): 529-538.
[6] 马积瑞, 范金燕. 信赖域方法在Hölderian局部误差界下的收敛性质[J]. 计算数学, 2021, 43(4): 484-492.
[7] 胡雅伶, 彭拯, 章旭, 曾玉华. 一种求解非线性互补问题的多步自适应Levenberg-Marquardt算法[J]. 计算数学, 2021, 43(3): 322-336.
[8] 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366.
[9] 刘金魁, 孙悦, 赵永祥. 凸约束伪单调方程组的无导数投影算法[J]. 计算数学, 2021, 43(3): 388-400.
[10] 唐玲艳, 郭嘉, 宋松和. 求解带刚性源项标量双曲型守恒律方程的保有界WCNS格式[J]. 计算数学, 2021, 43(2): 241-252.
[11] 郑伟珊. 弱奇异时滞Volterra积分方程雅可比收敛分析[J]. 计算数学, 2021, 43(2): 253-260.
[12] 袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16.
[13] 王然, 张怀, 康彤. 求解带有非线性边界条件的涡流方程的A-φ解耦有限元格式[J]. 计算数学, 2021, 43(1): 33-55.
[14] 丁戬, 殷俊锋. 求解一类非线性互补问题的松弛two-sweep模系矩阵分裂迭代法[J]. 计算数学, 2021, 43(1): 118-132.
[15] 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418.
阅读次数
全文


摘要