• 论文 • 上一篇    下一篇

一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用

洪庆国1, 刘春梅2, 许进超1   

  1. 1 宾夕法尼亚州立大学数学系, 宾州 PA 16802, 美国;
    2 湖南科技学院理学院, 永州 425199
  • 收稿日期:2020-04-30 出版日期:2020-08-15 发布日期:2020-08-15
  • 基金资助:

    作者刘春梅由国家自然科学基金(No.11901189),湖南省教育厅科研项目(No.19A191)支持.

洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.

Hong Qingguo, Liu Chunmei, Xu Jinchao. AN ABSTRACT STABILIZATION METHOD WITH APPLICATIONS TO NONLINEAR INCOMPRESSIBLE ELASTICITY[J]. Mathematica Numerica Sinica, 2020, 42(3): 298-309.

AN ABSTRACT STABILIZATION METHOD WITH APPLICATIONS TO NONLINEAR INCOMPRESSIBLE ELASTICITY

Hong Qingguo1, Liu Chunmei2, Xu Jinchao1   

  1. 1 Department of Mathematics, Pennsylvania State University, Unverisity Park, PA 16802, USA;
    2 College of Science, Hunan University of Science and Engineering, Yongzhou 425199, China
  • Received:2020-04-30 Online:2020-08-15 Published:2020-08-15
  • Supported by:

    The work of Qingguo Hong was partially supported by Center for Computational Mathematics and Applications, The Pennsylvania State University.

针对非线性不可压缩弹性力学问题,本文提出了一种抽象的稳定化方法并将其应用于非线性不可压缩弹性问题上.在该框架中,我们证明了只要连续的混合问题是稳定的,则可以修正任何满足离散inf-sup条件的混合有限元方法使其是稳定的且最优收敛的.我们将这种抽象的稳定化理论框架应用于非线性不可压缩弹性力学问题,给出了稳定性和收敛性理论结论,并通过数值实验验证了该结论.
In this paper, we propose and analyze an abstract stabilized mixed finite element framework that can be applied to nonlinear incompressible elasticity problems. In the abstract stabilized framework, we prove that any mixed finite element method that satisfies the discrete inf-sup condition can be modified so that it is stable and optimal convergent as long as the mixed continuous problem is stable. Furthermore, we apply the abstract stabilized framework to nonlinear incompressible elasticity problems and present numerical experiments to verify the theoretical results.

MR(2010)主题分类: 

()
[1] Reddy B, Simo J. Stability and convergence of a class of enhanced strain methods[J]. SIAM J. Numer. Anal., 1995, 32(6):1705-1728.

[2] Braess D, Carstensen C, Reddy B. Uniform convergence and a posteriori error estimators for the enhanced strain finite element method[J]. Numer. Math., 2004, 96(3):461-479.

[3] Houston P, Schotzau D, Wihler T. An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity[J]. Comput. Methods Appl. Mech. Engrg., 2006, 195(25-28):3224-3246.

[4] Hansbo P, Larson M. Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method[J]. Comput. Methods Appl. Mech. Engrg., 2002, 191(17-18):1895-1908.

[5] Hong Q, Kraus J, Xu J, Zikatanov L. A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations[J]. Numer. Math., 2016, 132(1):23-49.

[6] Wu S, Gong S, Xu J. Interior penalty mixed finite element methods of any order in any dimension for linear elasticity with strongly symmetric stress tensor[J]. Math. Models Methods in Appl. Sci., 2017, 27(14):2711-2743.

[7] Gong S, Wu S, Xu J. New hybridized mixed methods for linear elasticity and optimal multilevel solvers[J]. Numer. Math., 2019, 141(2):569-604.

[8] Wang F, Wu S, Xu J. A mixed discontinuous Galerkin method for linear elasticity with strongly imposed symmetry[J]. J. Sci. Comput., 2020, 83(1):1-17.

[9] Hong Q, Hu J, Ma L, Xu J. An Extended Galerkin Analysis for Linear Elasticity with Strongly Symmetric Stress Tensor[J]. arXiv preprint arXiv:2002.11664, 2020.

[10] Auricchio F, da Veiga L B, Lovadina C, Reali A. A stability study of some mixed finite elements for large deformation elasticity problems[J]. Comput. Methods Appl. Mech. Engrg., 2005, 194(9-11):1075-1092.

[11] Wriggers P, Reese S. A note on enhanced strain methods for large deformations[J]. Comput. Methods Appl. Mech. Engrg., 1996, 135(3-4):201-209.

[12] Lovadina C, Auricchio F. On the enhanced strain technique for elasticity problems[J]. Comput.& Structures, 2003, 81(8-11):777-787.

[13] Pantuso D, Bathe K. On the stability of mixed finite elements in large strain analysis of incompressible solids[J]. Finite Elem. Anal. Des., 1997, 28(2):83-104.

[14] Eyck A T, Celiker F, Lew A. Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity:Analytical estimates[J]. Comput. Methods Appl. Mech. Engrg., 2008, 197(33-40):2989-3000.

[15] Eyck A T, Celiker F, Lew A. Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity:Motivation, formulation, and numerical examples[J]. Comput. Methods Appl. Mech. Engrg., 2008, 197(45-48):3605-3622.

[16] A. Ten Eyck A, Lew A. An adaptive stabilization strategy for enhanced strain methods in nonlinear elasticity[J]. Internat. J. Numer. Methods Engrg., 2010, 81(11):1387-1416.

[17] Auricchio F, da Veiga L B, Lovadina C, Reali A. The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity:mixed FEMs versus NURBS-based approximations[J]. Comput. Methods Appl. Mech. Engrg., 2010, 199(5-8):314-323.

[18] Hughes T, Cottrell J, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Comput. Methods Appl. Mech. Engrg., 2005, 194(39-41):4135-4195.

[19] Brezzi F, Fortin M, Marini L. Mixed Finite Element Methods with Continuous Stresses[J]. Math. Models Methods Appl. Sci., 1993, 3:275-287.

[20] Xie X, Xu J, Xue G. Uniformly stable finite element methods for Darcy-Stokes-Brinkman models[J]. J. Comput. Math., 2008, 26(3):437-455.

[21] Bonet J, Wood R. Nonlinear continuum mechanics for finite element analysis[M]. Cambridge University Press, New York, 1997.

[22] Brezzi F, Fortin M. Mixed and hybrid finite element methods[M]. Springer-Verlag, New York, 1991.

[23] Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[J]. RAIRO Anal. Numer., 1974, 8(2):129-151.

[24] Arnold D, Brezzi F, Fortin M. A stable finite element for the Stokes equations[J]. Calcolo, 1984, 21(4):337-344.

[25] Girault V, Raviart P. Finite element methods for Navier-Stokes equations:theory and algorithms[M]. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986.
[1] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[2] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
[3] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[4] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226.
[5] 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418.
[6] 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17.
[7] 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307.
[8] 盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294.
[9] 杨晋平, 李志强, 闫玉斌. 求解Riesz空间分数阶扩散方程的一种新的数值方法[J]. 计算数学, 2019, 41(2): 170-190.
[10] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[11] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[12] 丛玉豪, 胡洋, 王艳沛. 含分布时滞的时滞微分系统多步龙格-库塔方法的时滞相关稳定性[J]. 计算数学, 2019, 41(1): 104-112.
[13] 张根根, 唐蕾, 肖爱国. 求解刚性Volterra延迟积分微分方程的隐显单支方法的稳定性与误差分析[J]. 计算数学, 2018, 40(1): 33-48.
[14] 陈丰, 吴峻峰. 分布式通信响应优化问题及其内点法求解[J]. 计算数学, 2017, 39(4): 378-392.
[15] 肖飞雁, 李旭旭, 陈飞盛. 非线性延迟积分微分方程连续Runge-Kutta方法的稳定性分析[J]. 计算数学, 2017, 39(1): 1-13.
阅读次数
全文


摘要