• 论文 • 上一篇    下一篇

求解加权线性最小二乘问题的一类预处理GAOR方法

王丽1, 罗玉花2, 王广彬3   

  1. 1. 西北师范大学数学与统计学院, 兰州 730070;
    2. 兰州大学数学与统计学院, 兰州 730000;
    3. 青岛农业大学数学系, 青岛 266109
  • 收稿日期:2018-05-23 出版日期:2020-02-15 发布日期:2020-02-15
  • 通讯作者: 王广彬,E-mail:wguangbin750828@sina.com
  • 基金资助:

    西北师范大学数学与统计学院大学生创新计划;山东高校科技计划(J16LI04).

王丽, 罗玉花, 王广彬. 求解加权线性最小二乘问题的一类预处理GAOR方法[J]. 计算数学, 2020, 42(1): 63-79.

Wang Li, Luo Yuhua, Wang Guangbin. A CLASS OF PRECONDITIONED GAOR METHODS FOR SOLVING WEIGHTED LINEAR LEAST-SQUARES PROBLEM[J]. Mathematica Numerica Sinica, 2020, 42(1): 63-79.

A CLASS OF PRECONDITIONED GAOR METHODS FOR SOLVING WEIGHTED LINEAR LEAST-SQUARES PROBLEM

Wang Li1, Luo Yuhua2, Wang Guangbin3   

  1. 1. College of Mathematics and Statistics, Northwest Normal University, LanZhou 730070, China;
    2. College of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China;
    3. Department of Mathematics, Qingdao Agricultural University, Qingdao 266109, China
  • Received:2018-05-23 Online:2020-02-15 Published:2020-02-15
为了快速求解一类来自加权线性最小二乘问题的2×2块线性系统,本文提出一类新的预处理子用以加速GAOR方法,也就是新的预处理GAOR方法.得到了一些比较结果,这些结果表明当GAOR方法收敛时,新方法比原GAOR方法和之前的一些预处理GAOR方法有更好的收敛性.而且,数值算例也验证了新预处理子的有效性.
In this paper, a new type of preconditioners are proposed for accelerating the GAOR method, which are the preconditioned GAOR methods, for solving a class of block 2×2 linear systems arising from the weighted linear least-squares problem. Some comparison results are obtained, the comparison results show that the convergence rate of the proposed preconditioned GAOR methods are indeed better than those of the original GAOR method and the preconditioned GAOR methods, whenever the original GAOR method is convergent. Furthermore, effectiveness of the proposed methods is verified by numerical experiment.

MR(2010)主题分类: 

()
[1] Berman A, Plemmoms R J. Nonnegative Matrices in the Mathematical Sciences[M]. Academic Press, New York, 1979.

[2] Chen K. Matrix Preconditioning Techniques and Applications. Cambridge University Press, 2005.

[3] Darvishi M T, Hessari P. On convergence of the generalized AOR method for linear systems with diagonally dominant coefficient matrices[J]. Appl. Math. Comput., 2006, 176:128-133.

[4] Hadjidimos A. Accelerated overrelaxation method[J]. Math. Comput., 1978, 32:149-157.

[5] Miao S X. On preconditioned GAOR methods for weighted linear least squares problems[J]. J. Comput. Anal. Appl., 2015, 18:371-382.

[6] Miao S X, Luo Y H, Wang G B. Two new preconditioned GAOR methods for weighted linear least squares problems[J]. Appl. Math. Comput., 2018, 324:93-104.

[7] Varga R S. Matrix Iterative Analysis[M]. Springer, Berlin, 2000.

[8] Shen H, Shao X, Zhang T. Preconditioned iterative methods for solving weighted linear least squares problems[J]. Appl. Math. Mech., 2012, 33(3):375-384.

[9] Wang G, Du Y, Tan F. Comparison results on preconditioned GAOR methods for weighted linear least squares problems[J]. J. Appl. Math., 2012, 9.

[10] Wang G, Wang T, Tan F. Some results on preconditioned GAOR methods[J]. Appl. Math. Comput., 2013, 219:5811-5816.

[11] Young D M. Iterative Solution of Large Linear Systems[M]. Academic Press, NewYork, 1971.

[12] Yuan J Y, Jin X Q, Convergence of the generalized AOR method[J]. Appl. Math. Comput., 1999, 99:35-46.

[13] Yuan J Y. Numerical methods for generalized least squares problem[J]. J. Comput. Appl. Math., 1996, 66:571-584.

[14] Yuan J Y, Iudem A N. SOR-type methods for generalized least squares problems[J]. Acta Math. Appl. Sin., 2000, 16:130-139.

[15] Yun J H. Comparison results on the preconditioned GAOR method for generalized least squares problems[J]. Int. J. Comput. Math., 2012, 89:2094-2105.

[16] Zhou X, Song Y, Wang L, Liu Q. Preconditioned GAOR methods for solving weighted linear least squares problems[J]. J. Comput.Appl. Math., 2009, 224:242-249.

[17] Huang Z G, Wang L G, Xu Z, Cui J J. Some new preconditioned generalized AOR methods for solving weighted linear least squares problems[J]. Comp. Appl. Math., 2018, 37:415-438.

[18] Huang Z G, Xu Z, Lu Q, Cui J J. Some new preconditioned generalized AOR methods for generalized least-squares problems[J]. Comp. Appl. Math., 2015, 269:87-104.

[19] Wu M J, Wang L, Song Y Z. Preconditioned AOR iterative method for linear systems[J]. Appl. Numer. Math., 2007, 57:672-685.
[1] 缪树鑫. 关于“求解加权线性最小二乘问题的一类预处理GAOR方法”一文的注记[J]. 计算数学, 2022, 44(1): 89-96.
[2] 曹阳, 陈莹婷. 正则化HSS预处理鞍点矩阵的特征值估计[J]. 计算数学, 2020, 42(1): 51-62.
[3] 戴平凡, 李继成, 白建超. 解线性互补问题的预处理加速模Gauss-Seidel迭代方法[J]. 计算数学, 2019, 41(3): 308-319.
[4] 任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322.
阅读次数
全文


摘要