盛秀兰1, 赵润苗2, 吴宏伟2
盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294.
Sheng Xiulan, Zhao Runmiao, Wu Hongwei. A HIGH ORDER DIFFERENCE SCHEME FOR TWO-DIMENSIONAL LINEAR HYPERBOLIC EQUATION WITH NEUMANN BOUNDARY CONDITIONS[J]. Mathematica Numerica Sinica, 2019, 41(3): 266-294.
Sheng Xiulan1, Zhao Runmiao2, Wu Hongwei2
MR(2010)主题分类:
分享此文:
[1] Dehghan M, Shokri A. A meshless method for numerical solution of a linear hyperbolic equation with variable coffcients in two space dimensional[J]. Numer. Methods Partial Differential Equations, 2009, 25:494-506.[2] He Dongdong. An unconditionally stable spatial sixth-order CCD-ADI method for the two dimensionallinear telegraph equation[J]. Numer. Algorithms, 2016, 72(4):1103-1117.[3] Mohanty R K, Jain M K. An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation[J]. Numer. Methods Partial Differential Equations, 2001, 17(6):684-688.[4] Liu J, Tang K. A new unconditionally stable ADI compact scheme for the two-space dimensional linear hyperbolic equation[J]. Internat. J. Comput. Math., 2010, 87(10):2259-2267.[5] Evans D J, Bulut H. The numerical solution of Burgers' equation by the alternating group explicit (age) method[J]. Internat. J. Comput. Math., 2003, 29(1):1289-1297.[6] Hu Y Y, Liu H W. An unconditionally stable spline difference scheme for solving the second 2D linear hyperbolic equation[C]. Computer Modelling and Simulation International Conference, on (2010), Sanya China, 375-378.[7] Mehdi Dehghan, Akbar Mohebbi. The combination of collocation, fnite difference, and multigrid methods for solution of the two-dimensional wave equation[J]. Numer. Methods Partial Differential Equations, 2008, 24(3):897-910.[8] Mohanty R K. An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions[J]. Appl. Math. Comput., 2004, 152(3):799-806.[9] Dehghan M, Ghesmati A. Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method[J]. Eng. Anal. Bound. Elem., 2010, 34(1):51-59.[10] Pekmen B, Tezer-Sezgin M. Differential quadrature solution of hyperbolic telegraph equation[J]. J. Appl. Math., 2012, 2012, Article ID 924765, 18 pages.[11] Ram Jiwari, Sapna Pandit, Mittal R C. A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions[J]. Appl. Math. Comput., 2012, 218(13):7279-7294.[12] Dehghan M, Ghesmati A. Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation[J]. Eng. Anal. Bound. Elem., 2010, 34(4):324-336.[13] Heinz-Otto Kreiss, Anders Petersson N, Jacob Ystrom. Difference approximations of the Neumann problem for the second order wave equation[J]. SIAM J. Numer. Anal., 2004, 42(3):1292-1323.[14] Appelo D, Petersson N A. A fourth-order accurate embedded boundary method for the wave equation[J]. SIAM J. Sci. Comput., 2012, 34(6):A2982-A3008.[15] Gao Guang-Hua, Sun Zhi-Zhong. Compact difference schemes for heat equation with Neumann boundary conditions (Ⅱ)[J]. Numer. Methods Partial Differential Equations, 2013, (29):1459-1486.[16] Sun Z Z. Compact difference schemes for heat equation with Neumann boundary conditions[J]. Numer. Methods Partial Differential Equations, 2010, 25(6):1320-1341.[17] Zhou Y L. Application of discrete functional analysis to the fnite difference methods[M]. Interna-tional Academic Publishers, 1990, 8(1):49-65.[18] 万正苏.带导数边界条件的线性双曲方程的一个二阶收敛格式[J].高等学校计算数学学报, 2002, 24(2):212-224.[19] Li J, Sun Z Z, Zhao X. A three level linearized compact difference scheme for the Cahn-Hilliard equation[J]. Sci. China Math., 2012, 55(4):805-826.[20] Liao H L, Sun Z Z. Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations[J]. Numer. Methods Partial Differential Equations, 2010, 26(1):37-60. |
[1] | 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33. |
[2] | 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118. |
[3] | 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443. |
[4] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[5] | 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321. |
[6] | 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366. |
[7] | 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412. |
[8] | 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226. |
[9] | 袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16. |
[10] | 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109. |
[11] | 李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117. |
[12] | 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471. |
[13] | 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456. |
[14] | 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418. |
[15] | 成娟, 舒其望. 可压缩流体力学高精度拉格朗日格式及其保正性质[J]. 计算数学, 2020, 42(3): 261-278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||