• 论文 • 上一篇    下一篇

求解定常不可压Stokes方程的两层罚函数方法

李世顺1, 祁粉粉1, 邵新平2   

  1. 1. 河南理工大学数学与信息科学学院, 焦作 454003;
    2. 杭州电子科技大学理学院, 杭州 310027
  • 收稿日期:2017-09-02 出版日期:2019-09-15 发布日期:2019-08-21
  • 通讯作者: 李世顺,Email:lss6@sina.com
  • 基金资助:

    国家自然科学基金项目(No.11401177,11701133),浙江省教育厅科研项目(No.Y201533698).

李世顺, 祁粉粉, 邵新平. 求解定常不可压Stokes方程的两层罚函数方法[J]. 计算数学, 2019, 41(3): 259-265.

Li Shishun, Qi FenFen, Shao Xinping. TWO-LEVEL PENALTY METHOD FOR THE STEADY INCOMPRESSIBLE STOKES EQUATIONS[J]. Mathematica Numerica Sinica, 2019, 41(3): 259-265.

TWO-LEVEL PENALTY METHOD FOR THE STEADY INCOMPRESSIBLE STOKES EQUATIONS

Li Shishun1, Qi FenFen1, Shao Xinping2   

  1. 1. School of Mathematics & Information Science, Henan Polytechnic University, Jiaozuo 454003, China;
    2. School of Science & Hangzhou Dianzi University, Hangzhou 310027, China
  • Received:2017-09-02 Online:2019-09-15 Published:2019-08-21
借助于两套有限元网格空间提出了一种求解定常不可压Stokes方程的两层罚函数方法.该方法只需要求解粗网格空间上的Stokes方程和细网格空间上的两个易于求解的罚参数方程(离散后的线性方程组具有相同的对称正定系数矩阵).收敛性分析表明粗网格空间相对于细网格空间可以选择很小,并且罚参数的选取只与粗网格步长和问题的正则性有关.因此罚参数不必选择很小仍能够得到最优解.最后通过数值算例验证了上述理论结果,并且数值对比可知两层罚函数方法对于求解定常不可压Stokes方程具有很好的效果.
In this paper, we present a two-level penalty method for the steady incompressible Stokes equations by employing two finite element spaces. This method involves solving one small Stokes equation on the coarse space and two penalty equations on the fine space (the linear systems with same symetric and positive coefficient matrices). The convergence shows that the coarse space can be chosen very small. Moreover, the penalty parameter is only dependent on the coarse mesh size and the regularity of the problem. Therefore, the resulting solution still achieves asymptotically optimal accuracy when the penalty parameter is chosen "not very small". The numerical results confirm the convergence analysis, and the numerical comparison also shows that this method is efficient for solving the steady incompressible Stokes equations.

MR(2010)主题分类: 

()
[1] Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods[M]. New York:Springer, 2002.

[2] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods[M]. New York:Springer, 1991.

[3] Carey G F, Krishnan R. Penalty approximation of Stokes flow[J]. Comput. Methods Appl. Mech. Engrg., 1992, 35:169-206.

[4] Cheng X L, Shaikh A W. Analysis of the iterative penalty method for the Stokes equations[J]. Appl. Math. Lett., 2006, 19:1024-1028.

[5] Dai X X, Cheng X L. The iterative penalty method for Stokes equations using Q1-P0 element[J]. Appl. Math. Comput., 2008, 201:805-810.

[6] Elman H C, David J S, Andrew J W. Finite Elements and Fast Iterative Solvers:With Applications in Incompressible Fluid Dynamics[M]. New York:Oxford University Press, 2005.

[7] He Y. Two-level method based on finite element and Crank-Nicolson extrapolation for the timedependent Navier-Stokes equations[J]. SIAM J. Numer. Anal., 2003, 41(4):1263-1285.

[8] Huang P, He Y, Feng X. Convergence and stability of two-level penalty mixed finite element method for stationary Navier-Stokes equations[J]. Front. Math. China, 2013, 8:837-854.

[9] Kheshgi H, Luskin M. Analysis of the finite element variable penalty method for Stokes equations[J]. Math. Comp., 1985, 45(172):347-363.

[10] Layton W, Tobiska L. A two-level method with backtracking for the Navier-Stokes equations[J]. SIAM J. Numer. Anal., 1998, 35:2035-2054.

[11] Layton W, Ye X. Two-level discretizations of the stream function form of the navier-stokes equations[J]. Numer. Funct. Anal. Optim., 1999, 20:909-916.

[12] Lin S Y, Chin Y S, Wu T M. A modified penalty method for Stokes equations and its applications to Navier-Stokes equations[J], SIAM J. Sci. Comput., 1995, 16(1):1-19.

[13] Oden J T, Kikuchi N, Song Y J. Penalty finite element methods for the analysis of Stokesian flows[J]. Comput. Methods Appl. Mech. Engrg., 1992, 31:297-329.

[14] Xu J. Two-grid discretization techinques for linear and nonlinear PDEs[J]. SIAM J. Numer. Anal., 1996, 33(5):1759-1777.
[1] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
[2] 董自明, 李宏, 赵智慧, 唐斯琴. 对流扩散反应方程的局部投影稳定化连续时空有限元方法[J]. 计算数学, 2021, 43(3): 367-387.
[3] 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
[4] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[5] 戴小英. 电子结构计算的数值方法与理论[J]. 计算数学, 2020, 42(2): 131-158.
[6] 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116.
[7] 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17.
[8] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[9] 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
[10] 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116.
[11] 李宏, 杜春瑶, 赵智慧. 反应扩散方程的连续时空有限元方法[J]. 计算数学, 2017, 39(2): 167-178.
[12] 李晓翠, 杨小远, 张英晗. 一类随机非自伴波方程的半离散有限元近似[J]. 计算数学, 2017, 39(1): 42-58.
[13] 赵智慧, 李宏, 罗振东. Sobolev方程的连续时空有限元方法[J]. 计算数学, 2016, 38(4): 341-353.
[14] 曹济伟. 求解二维时谐Maxwell方程的一种混合有限元新格式[J]. 计算数学, 2016, 38(4): 429-441.
[15] 王军平, 叶秀, 张然. 弱有限元方法简论[J]. 计算数学, 2016, 38(3): 289-308.
阅读次数
全文


摘要