• 论文 • 上一篇    

含分布时滞的时滞微分系统多步龙格-库塔方法的时滞相关稳定性

丛玉豪1,2, 胡洋1, 王艳沛1   

  1. 1. 上海大学理学院数学系, 上海 200444;
    2. 上海海关学院, 上海 201204
  • 收稿日期:2018-06-16 出版日期:2019-03-15 发布日期:2019-02-18
  • 基金资助:

    国家自然科学基金(11471217)资助项目.

丛玉豪, 胡洋, 王艳沛. 含分布时滞的时滞微分系统多步龙格-库塔方法的时滞相关稳定性[J]. 计算数学, 2019, 41(1): 104-112.

Cong Yuhao, Hu Yang, Wang Yanpei. DELAY-DEPENDENT STABILITY OF MULTISTEP RUNGE-KUTTA METHODS FOR DIFFERENTIAL SYSTEMS WITH DISTRIBUTED DELAYS[J]. Mathematica Numerica Sinica, 2019, 41(1): 104-112.

DELAY-DEPENDENT STABILITY OF MULTISTEP RUNGE-KUTTA METHODS FOR DIFFERENTIAL SYSTEMS WITH DISTRIBUTED DELAYS

Cong Yuhao1,2, Hu Yang1, Wang Yanpei1   

  1. 1. College of Science, Shanghai University, Shanghai 200444, China;
    2. Shanghai Customs College, Shanghai 201204, China
  • Received:2018-06-16 Online:2019-03-15 Published:2019-02-18
本文研究了一类含分布时滞的时滞微分系统的多步龙格-库塔方法的稳定性.基于辐角原理,本文给出了多步龙格-库塔方法弱时滞相关稳定性的充分条件,并通过数值算例验证了理论结果的有效性.
This paper is concerned with the stability of multistep Runge-Kutta methods for differential systems with distributed delays. Based on the Argument Principle, a sufficient condition of weak delay-dependent stability of multistep Runge-Kutta methods for the systems is obtained. Furthermore, numerical examples are provided to demonstrate the effectiveness of the theoretical results.

MR(2010)主题分类: 

()
[1] Ford B N J. Stability properties of a scheme for the approximate solution of a delay-integrodifferential equation[J]. Applied Numerical Mathematics, 1992, 9(3):357-370.

[2] Luzyanina T, Engelborghs K, Roose D. Computing Stability of Differential Equations with Bounded Distributed Delays[J]. Numerical Algorithms, 2003, 34(1):41-66.

[3] Koto T. Stability of Runge-Kutta methods for delay integro-differential equations[J]. Journal of Computational and Applied Mathematics, 2002, 145(2):483-492.

[4] Huang C M. Stability of linear multistep methods for delay integro-differential equations[J]. Computers & Mathematics with Applications, 2008, 55(12):2830-2838.

[5] Huang C M, Vandewalle S. Stability of Runge-Kutta-Pouzet methods for Volterra integrodifferential equations with delays[J]. Frontiers of Mathematics in China, 2009, 4(1):63-87.

[6] Chen H, Zhang C J. Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations[J]. Applied Numerical Mathematics, 2012, 62(2):141-154.

[7] Koto T. Stability of θ-methods for delay integro-differential equations[J]. Journal of Computational & Applied Mathematics, 2003, 161(2):393-404.

[8] Zhang C J, Vandewalle S. General Linear Methods for Volterra Integro-differential Equations with Memory[J]. SIAM Journal on Scientific Computing, 2006, 27(6):2010-2031.

[9] Zhao J J, Fan Y, Xu Y. Delay-dependent stability analysis of symmetric boundary value methods for linear delay integro-differential equations[J]. Numerical Algorithms, 2014, 65(1):125-151.

[10] Cong Y H, Wang Y P, Hu G D. Weak delay-dependent stability of Runge-Kutta methods for differential systems with distributed delays, Journal of Computational and Applied Mathematics, 2018, 342:70-82.

[11] Hu G D, Mitsui T. Delay-dependent stability of numerical methods for delay differential systems of neutral type[J]. BIT Numerical Mathematics, 2017, 57(3):731-752.

[12] Hu G D. Computable stability criterion of linear neutral systems with unstable difference operators[J]. Journal of Computational & Applied Mathematics, 2014, 271(12):223-232.

[13] Xiao A G, Tang Y F. Symplectic Properties of multistep Runge-Kutta methods[J]. Computers & Mathematics with Applications, 2002, 44(10):1329-1338.

[14] Qi R, Zhang C J, Zhang Y J. Dissipativity of multistep runge-kutta methods for nonlinear volterra delay-integro-differential equations[J]. Acta Mathematicae Applicatae Sinica, 2012, 28(2):225-236.
[1] 甘四清, 史可. 多步Runge-Kutta 方法的保单调性[J]. 计算数学, 2010, 32(3): 247-264.
[2] 余越昕. 非线性中立型延迟积分微分方程一般线性方法的稳定性分析[J]. 计算数学, 2010, 32(2): 125-134.
[3] 胡莹莹, 王雨顺, 王会平. RLW方程的一个新的显式多辛格式[J]. 计算数学, 2009, 31(4): 349-362.
阅读次数
全文


摘要