武海军
武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
Wu Haijun. FEM AND CIP-FEM FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER[J]. Mathematica Numerica Sinica, 2018, 40(2): 191-213.
Wu Haijun
MR(2010)主题分类:
分享此文:
[1] Ainsworth M. Discrete dispersion relation for hp-version finite element approximation at high wave number[J]. SIAM J. Numer. Anal., 2004, 42(2):553-575.[2] Aziz A and Kellogg R. A scattering problem for the Helmholtz equation. In Advances in Computer Methods for Partial Differential Equations-Ⅲ, 1979, 93-95.[3] Babuška I and Sauter S. Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?[J]. SIAM Rev., 2000, 42(3):451-484.[4] Brenner S and Scott R. The Mathematical Theory of Finite Element Methods, volume 15. Springer Science & Business Media, 2007.[5] Burman E, Zhu L and Wu H. Linear continuous interior penalty finite element method for Helmholtz equation with high wave number:One-dimensional analysis[J]. Numer. Meth. Par. Diff. Equ., 2016, 32:1378-1410.[6] Chen H, Lu P and Xu X. A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number[J]. SIAM J. Numer. Anal., 2013, 51:2166-2188.[7] Chen H, Wu H and Xu X. Multilevel preconditioner with stable coarse grid corrections for the helmholtz equation[J]. SIAM J. Sci. Comput., 2015, 37:A221-A244.[8] Chen Z, Wu T and Yang H. An optimal 25-point finite difference scheme for the Helmholtz equation with PML[J]. J. Comput. Appl. Math., 2011, 236:1240-1258.[9] Chen Z and Xiang X. A source transfer domain decomposition method for Helmholtz equations in unbounded domain[J]. SIAM J. Numer. Anal., 2013, 51(4):2331-2356.[10] Demkowicz L, Gopalakrishnan J, Muga I and Zitelli J. Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation[J]. Comput. Methods Appl. Mech. Engrg., 2012, 214(12):126-138.[11] Deraemaeker A, Babuška I and Bouillard P. Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions[J]. Internat. J. Numer. Methods Engrg., 1999, 46:471-499.[12] Douglas J and Dupont T. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Lecture Notes in Physics, 1976, 58:207-216.[13] Du Y and Wu H. An improved pure source transfer domain decomposition method for Helmholtz equations in unbounded domain. ArXiv e-prints, 2015.[14] Du Y and Wu H. Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number[J]. SIAM J. Numer. Anal., 2015, 53(2):782-804.[15] Du Y and Zhu L. Preasymptotic error analysis of high order interior penalty discontinuous Galerkin methods for the Helmholtz equation with high wave number[J]. J. Sci. Comput., 2016, 67:130-152.[16] Engquist B and Runborg O. Computational high frequency wave propagation[J]. Acta numerica, 2003, 12:181-266.[17] Engquist B and Ying L. Sweeping preconditioner for the Helmholtz equation:hierarchical matrix representation[J]. Comm. Pure Appl. Math., 2011, 64(5):697-735.[18] Engquist B and Ying L. Sweeping preconditioner for the Helmholtz equation:moving perfectly matched layers[J]. Multiscale Model. Simul., 2011, 9:686-710.[19] Feng X and Wu H. Discontinuous Galerkin methods for the Helmholtz equation with large wave numbers[J]. SIAM J. Numer. Anal., 2009, 47(4):2872-2896.[20] Feng X and Wu H. hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number[J]. Math. Comp., 2011, 80(276):1997-2024.[21] Feng X and Wu H. An absolutely stable discontinuous Galerkin method for the indefinite timeharmonic Maxwell equations with large wave number[J]. SIAM J. Numer. Anal., 2014, 52:2356-2380.[22] Hiptmair R, Moiola A and Perugia I. Plane wave discontinuous Galerkin methods for the 2d Helmholtz equation:Analysis of the p-version[J]. SIAM J. Numer. Anal., 2011, 49:264-284.[23] Hiptmair R, Moiola A and Perugia I. A Survey of Trefftz Methods for the Helmholtz Equation, pages 237-279. Springer International Publishing, Cham, 2016.[24] Hu Q and Zhang H. Substructuring preconditioners for the systems arising from plane wave discretization of Helmholtz equations[J]. SIAM J. Sci. Comput., 2016, 38:A2232-A2261.[25] Ihlenburg F. Finite element analysis of acoustic scattering, volume 132 of Applied Mathematical Sciences. Springer-Verlag, New York, 1998.[26] Ihlenburg F and Babuska I. Finite element solution of the Helmholtz equation with high wave number part Ⅱ:the hp version of the FEM[J]. SIAM J. Numer. Anal., 1997, 34(1):315-358.[27] Ihlenburg F and Babuška I. Finite element solution of the Helmholtz equation with high wave number. I. The h-version of the FEM[J]. Comput. Math. Appl., 1995, 30(9):9-37.[28] Douglas J, Santos J and Sheen D. Approximation of scalar waves in the space-frequency domain[J]. Math. Models Methods Appl. Sci., 1994, 4:509-531.[29] Li Y and Wu H. Fem and cip-fem for helmholtz equation with high wave number and pml truncation. Submitted, 2017.[30] Melenk J, Parsania A and Sauter S. General DG-methods for highly indefinite Helmholtz problems[J]. J. Sci. Comp., 2013, 57(3):536-581.[31] Melenk J and Sauter S. Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions[J]. Math. Comp., 2010, 79(272):1871-1914.[32] Melenk J and Sauter S. Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation[J]. SIAM J. Numer. Anal., 2011, 49(3):1210-1243.[33] Moiola A and Spence E. Is the Helmholtz equation really sign-indefinite?[J]. SIAM Rev., 2014, 56:274-312.[34] Schatz A. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms[J]. Math. Comp., 1974, 28:959-962.[35] Shen J and Wang L. Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains[J]. SIAM J. Numer. Anal., 2007, 45(5):1954-1978.[36] Thompson L. A review of finite-element methods for time-harmonic acoustics[J]. J. Acoust. Soc. Amer., 2006, 119:1315-1330.[37] Wang K and Wong Y. Is pollution effect of finite difference schemes avoidable for multi-dimensional Helmholtz equations with high wave numbers?[J]. Commun. Comput. Phys., 2017, 21:490-514.[38] Wu H. 高波数helmholtz方程的内罚有限元方法[J].中国科学:数学, 2012, 42:429-444.[39] Wu H. Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I:linear version[J]. IMA J. Numer. Anal., 2013, 34(3):1266-1288.[40] Zhu L and Wu H. Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. part Ⅱ:hp version[J]. SIAM J. Numer. Anal., 2013, 51(3):1828-1852.[41] Zienkiewicz O. Achievements and some unsolved problems of the finite element method[J]. Int. J. Numer. Meth. Engng., 2000, 47:9-28. |
[1] | 卢培培, 许学军. 高波数波动问题的多水平方法[J]. 计算数学, 2018, 40(2): 119-134. |
[2] | 王坤, 张扬, 郭瑞. Helmholtz方程有限差分方法概述[J]. 计算数学, 2018, 40(2): 171-190. |
[3] | 骆其伦, 黎稳. 二维Helmholtz方程的联合紧致差分离散方程组的预处理方法[J]. 计算数学, 2017, 39(4): 407-420. |
[4] | 郑权, 高玥, 秦凤. Helmholtz方程外边值问题的基于修正的DtN边界条件的有限元方法[J]. 计算数学, 2016, 38(2): 200-211. |
[5] | 孟文辉, 王连堂. Helmholtz方程周期Green函数及其偏导数截断误差收敛阶的分析[J]. 计算数学, 2015, 37(2): 123-136. |
[6] | 张敏,杜其奎,. 椭圆外区域上Helmholtz问题的自然边界元法[J]. 计算数学, 2008, 30(1): 75-88. |
[7] | 杨超,孙家昶. 一类六边形网格上拉普拉斯4点差分格式及其预条件子[J]. 计算数学, 2005, 27(4): 437-448. |
[8] | 贾祖朋,邬吉明,余德浩. 三维Helmholtz方程外问题的自然边界元与有限元耦合法[J]. 计算数学, 2001, 23(3): 357-368. |
[9] | 余德浩,贾祖朋. 二维Helmholtz方程外问题基于自然边界归化的非重叠型区域分解算法[J]. 计算数学, 2000, 22(2): 227-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||