王福胜, 张瑞
王福胜, 张瑞. 不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法[J]. 计算数学, 2018, 40(1): 49-62.
Wang Fusheng, Zhang Rui. A STRONGLY SUB-FEASIBLE NORM-RELAXED SQCQP ALGORITHM FOR THE INEQUALITY CONSTRAINED MINIMAX PROBLEMS[J]. Mathematica Numerica Sinica, 2018, 40(1): 49-62.
Wang Fusheng, Zhang Rui
MR(2010)主题分类:
分享此文:
[1] Rustem B, Nguyen Q. An algorithm for the inequality-constrained discrete minimax problem[J]. SIAM Journal on Optimization, 1998, 8:265-283.[2] Polak E, Royset J O and Womersley R S. Algorithms with Adaptive Smoothing for Finite minimax Problems[J]. Journal of Optimization Theory and Applications, 2003, 119(3):459-484.[3] Di Pillo G, Grippo L, Lucidi S. A smooth method for the finite minimax problem[J]. Math Program, 1993, 60:187-214.[4] Vardi A. New minimax algorithm[J]. J Optim Theory Appl, 1992, 75:613-634[5] Jian J B, Li J,Zheng H Y, Li J L. A superlinearly convergent norm-relaxed method of quasistrongly sub-feasible direction for inequality constrained minimax problems[J]. Applied Mathematics and Computation, 2014, 226:673-690.[6] He S X, Liu X F, Wang C M. A Nonlinear Lagrange Algorithm for minimax Problems with General Constraints[J]. Numerical Functional Analysis and Optimization, 2016, 37(6):680-698.[7] Zhu Z B, Cai X, Jian J B. An improved SQP algorithm for solving minimax problems[J]. Applied Mathematics Letters, 2009, 22(4):464-469.[8] 薛毅. 求解minimax优化问题的SQP方法[J].系统科学与数学, 2002, 22(3):355-364.[9] Wang F S. A hybrid algorithm for linearly constrained minimax Problems[J]. Annals of Operations Research, 2013, 206(1):501-525.[10] Wang F S, Wang C L, Wang L. A new trust-region algorithm for finite minimax problem[J]. Journal of Computational Mathematics, 2012, 30(3):262-278.[11] Fukushima M, Luo Z Q, Tseng P. A Sequential Quadratically Constrained Quadratic Programming Methods for Differentialable Convex minimization[J]. SIAM Journal on Optimization, 2003, 13(4):1098-1119.[12] Solodov M V. On the Sequential Quadratically Constrained Quadratic Programming Methods[J]. Mathematics of Operations Research, 2004, 29(1):64-79.[13] Yuan Y X, Sun W Y. Optimization Theory and Methods[M]. Beijing:Science Press, 1997.[14] Tang C M, Jian J B. Sequential Quadratically Constrained Quadratic Programming Method with an Augmented Lagrangian Line Search Function[J]. Journal of Computational and Applied Mathematics, 2008, 220(1-2):525-547.[15] 晁绵涛.非线性minimax问题的二次约束二次算法模型[J]. 广西大学硕士学位论文, 2007.[16] 刘美杏,唐春明,简金宝.不等式约束优化基于新型积极识别集的SQCQP算法[J]. 应用数学学报, 2015, 38(2):222-234.[17] Chao M T, Wang Z X, Liang Y M, Hu Q J. Quadratically Constraint Quadratical Algorithm Model for Nonlinear minimax Problems[J]. Applied Mathmatics and Computation, 2008, 205:247-262.[18] Jian J B, Chao M T. A sequential quadratically constrained quadratic programming method for uncostrained minimax problems[J]. Journal of Mathematical Analysis and Applications, 2010, 362:34-45.[19] Jian J B, Zheng H Y, Hu Q J,Tang C M. A new norn-relaxed method of strongly sub-feasible direction for inequality constrained optimization[J]. Applied Mathematics and Computation, 2005, 168:1-28.[20] Chen, X., Kostreva, M.M. A generalization of the norm-relaxed method of feasible directions[J]. Applied Mathematics and Computation, 1999, 102:257-273.[21] 简金宝.光滑约束优化快速算法-理论分析与数值试验[M].北京:科学出版社, 2010.[22] Jian J B, Quan R,Zhang X L. Feasible generalized monotone line search SQP algorithm for nonlinear minimax problems with inequality constraints[J]. Journal of Computational and Applied Mathematics, 2007, 205:406-429.[23] Napsu Karmitsa. Test problems for large-scale nonsmooth minimization[J]. Reports of the Department of Mathematical Information Technology, Series B. Scientific Computing, 2007, B4:1-12. |
[1] | 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471. |
[2] | 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50. |
[3] | 刘金魁. 解凸约束非线性单调方程组的无导数谱PRP投影算法[J]. 计算数学, 2016, 38(2): 113-124. |
[4] | 刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1): 96-112. |
[5] | 简金宝, 尹江华, 江羡珍. 一个充分下降的有效共轭梯度法[J]. 计算数学, 2015, 37(4): 415-424. |
[6] | 袁敏, 万中. 求解非线性P0互补问题的非单调磨光算法[J]. 计算数学, 2014, 36(1): 35-50. |
[7] | 简金宝, 唐菲, 黎健玲, 唐春明. 无约束极大极小问题的广义梯度投影算法[J]. 计算数学, 2013, 35(4): 385-392. |
[8] | 刘金魁. 两种有效的非线性共轭梯度算法[J]. 计算数学, 2013, 35(3): 286-296. |
[9] | 范斌, 马昌凤, 谢亚君. 求解非线性互补问题的一类光滑Broyden-like方法[J]. 计算数学, 2013, 35(2): 181-194. |
[10] | 简金宝, 马鹏飞, 徐庆娟. 不等式约束优化一个基于滤子思想的广义梯度投影算法[J]. 计算数学, 2013, 35(2): 205-214. |
[11] | 刘景辉, 马昌凤, 陈争. 解无约束优化问题的一个新的带线搜索的信赖域算法[J]. 计算数学, 2012, 34(3): 275-284. |
[12] | 王开荣, 刘奔. 建立在修正BFGS公式基础上的新的共轭梯度法[J]. 计算数学, 2012, 34(1): 81-92. |
[13] | 江羡珍, 韩麟, 简金宝. Wolfe线搜索下一个全局收敛的混合共轭梯度法[J]. 计算数学, 2012, 34(1): 103-112. |
[14] | 万中, 冯冬冬. 一类非单调保守BFGS算法研究[J]. 计算数学, 2011, 33(4): 387-396. |
[15] | 杨柳, 陈艳萍. 求解非线性方程组的一种新的全局收敛的Levenberg-Marquardt算法[J]. 计算数学, 2008, 30(4): 388-396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||