• 论文 • 上一篇    下一篇

分布式通信响应优化问题及其内点法求解

陈丰1, 吴峻峰2   

  1. 1. 中国南方电网有限责任公司, 广州 510530;
    2. 中山大学, 广州 510275
  • 收稿日期:2016-12-26 出版日期:2017-12-15 发布日期:2017-11-13

陈丰, 吴峻峰. 分布式通信响应优化问题及其内点法求解[J]. 计算数学, 2017, 39(4): 378-392.

Chen Feng, Wu Junfeng. AN OPTIMIZATION PROBLEM OF RESPONSIVENESS OF DISTRIBUTED COMMUNICATION SYSTEM AND A SOLVER BASED ON INTERIOR-POINT METHOD[J]. Mathematica Numerica Sinica, 2017, 39(4): 378-392.

AN OPTIMIZATION PROBLEM OF RESPONSIVENESS OF DISTRIBUTED COMMUNICATION SYSTEM AND A SOLVER BASED ON INTERIOR-POINT METHOD

Chen Feng1, Wu Junfeng2   

  1. 1. China Southern Power Grid, Guangzhou 510530, China;
    2. Sun Yat-sen University, Guangzhou 510275, China
  • Received:2016-12-26 Online:2017-12-15 Published:2017-11-13
为了优化移动互联网的分布式通信系统的响应速度,建立分布式通信系统响应速度最优化问题的数学模型,并设计和改进求解该最优化问题的内点法.针对该最优化问题发展一套高效率预条件方法来帮助求解内点法,不但改善计算方法的数值稳定性,而且提高算法的计算效率.通过数值实验验证该预条件对算法稳定性和效率的提高.
To optimize the responsiveness of distributed communication system on mobile Internet, a mathematical model of system responsiveness optimization is established, and a solver based on interior method is designed. To improve the numerical stability and efficiency of the solver, a fast preconditioner is developed. Numerical experiments are carried out to verify the stability and efficiency of the solver due to the preconditioner.

MR(2010)主题分类: 

()
[1] Dantzig G B. Reminiscences about the origins of linear programming[J]. Operations Research Letters, 1982, 48(298).

[2] Klee V and Minty G J. How Good Is the Simplex Algorithm?[C]. In O. Shisha, Ed., Inequalities Ⅲ, pages 159-175, New York, 1972. Academic Press.

[3] Karmarkar N. A new polynomial-time algorithm for linear programming[C]. In symposium on the theory of computing, 1984, 4:373-395.

[4] Fiacco A V and Mccormick G P. The Sequential Unconstrained Minimization Technique for Nonlinear Programing, a Primal-Dual Method[J]. Management Science, 1964, 10(2):360-366.

[5] Nesterov Y and Nemirovski A. Interior-Point Polynomial Algorithms in Convex Programming[M]. SIAM, Philadelphia, 1994.

[6] Mehrotra S. On the Implementation of a Primal-Dual Interior Point Method[J]. Siam Journal on Optimization, 2006.

[7] Wright M H. Interrior Methods for Constraint Optimization[J]. Acta Numerica, 1992, 341-407.
[1] 柯艺芬, 马昌凤. 椭圆PDE-约束优化问题的一个预条件子[J]. 计算数学, 2017, 39(1): 70-80.
[2] 曾闽丽, 张国凤. 速度追踪问题中鞍点系统的新分裂迭代[J]. 计算数学, 2016, 38(4): 354-371.
[3] 曹阳, 牛强, 蒋美群. 广义鞍点问题基于PSS的约束预条件子[J]. 计算数学, 2012, 34(2): 183-194.
[4] 黄佩奇, 陈金如. 非匹配网格上Stokes-Darcy模型的非协调元方法及其预条件技术[J]. 计算数学, 2011, 33(4): 397-408.
[5] 王俊仙, 胡齐芽, 舒适. 一种求解 H(curl) 型椭圆问题的非重叠 DDM 预条件子[J]. 计算数学, 2010, 32(4): 373-384.
[6] 余越昕. 非线性中立型延迟积分微分方程一般线性方法的稳定性分析[J]. 计算数学, 2010, 32(2): 125-134.
[7] 蒋美群, 曹阳. 广义鞍点问题的块三角预条件子[J]. 计算数学, 2010, 32(1): 47-58.
[8] 陈星玎, 胡齐芽. 基于几何非协调分解的Lagrange乘子区域分解方法[J]. 计算数学, 2009, 31(3): 299-308.
[9] 鲍吉锋, 朱德通. 有界约束非线性优化问题的仿射共轭梯度路径法[J]. 计算数学, 2009, 31(1): 37-50.
[10] 钟柳强, 谭林, 王俊仙, 舒适. 一种求解第二类Nedelec 棱有限元方程的快速算法[J]. 计算数学, 2008, 30(4): 397-408.
[11] 张诚坚,金杰,. 刚性多滞量积分微分方程的Runge—Kutta方法[J]. 计算数学, 2007, 29(4): 391-402.
[12] 王学忠,黄廷祝,李良,傅英定,. H-矩阵方程组的预条件迭代法[J]. 计算数学, 2007, 29(1): 89-98.
[13] 余越昕,李寿佛,. 非线性中立型延迟微分方程单支方法的数值稳定性[J]. 计算数学, 2006, 28(4): 357-364.
[14] 杨超,孙家昶. 一类六边形网格上拉普拉斯4点差分格式及其预条件子[J]. 计算数学, 2005, 27(4): 437-448.
[15] 王文强,李寿佛. 非线性刚性变延迟微分方程单支方法的数值稳定性[J]. 计算数学, 2002, 24(4): 417-430.
阅读次数
全文


摘要