徐海文1, 孙黎明2
徐海文, 孙黎明. 一类凸优化的加速混合下降算法[J]. 计算数学, 2017, 39(2): 200-212.
Xu Haiwen, Sun Liming. A ACCELERATED HYBRID DESCENT ALGORITHM FOR CONVEX MINIMIZATION[J]. Mathematica Numerica Sinica, 2017, 39(2): 200-212.
Xu Haiwen1, Sun Liming2
MR(2010)主题分类:
分享此文:
[1] Nesterov Y E. A method for solving the convex programming problem with convergence rate O(1/k2)[J]. Dokl. Akad. Nauk SSSR, 1983, 269:543-547.[2] Patrick T H, Pang J S. Finite-Dimensional Variational Inequality and Nonlinear Complementartity problems:A survey of theory, algorithms and applications[J]. Mathematical Programming, 1998, 48:162-220.[3] Rockafellar R T. Augmented Lagrangians and applications of the proximal point algorithm in convex programming[J]. Mathematics of Operations Research, 1976, 1:97-116.[4] Rockafellar R T. Monotone operators and the proximal point algorithm[J]. SIAM Journal on Control and Optimization, 1976, 14:877-898.[5] Eckstein J. Approximate iterations in Bregman-function-based proximal algorithms[J]. Mathematical Programming, 1998, 83:113-123.[6] He B S, Yuan X M. An accelerated inexact proximal point algorithm for convex minimization[J]. Journal of Optimization Theory and Applications, 2012, 154(2):536-548.[7] He B S, Liao L Z, Wang X. Proximal-like contraction methods for monotone variational inequalities in a unified framework I:Effective quadruplet and primary methods[J]. Computational Optimization and Applications, 2012, 51(2):681-708.[8] He B S, Liao L Z, Yang Z H. A new approximate proximal point algorithm for maximal monotone operator[J]. Science in China, Series A, 2003, 46:200-206.[9] He B S, Liao L Z. Improvements of some projection methods for monotone nonlinear variational inequalities[J]. Journal of Optimization Theory and Applications, 2002, 112:111-128.[10] Korpelevich G M. The extragradient method for finding saddle points and other problems[J]. Ekonomika i Matematicheskie Metody, 1976, 12:747-756.[11] Khobotov E N. Modification of the extragradient method for solving variational inequalities and certain optimization problems[J]. USSR Computational Mathematics and Mathematical Physics, 1987, 27:120-127.[12] 徐海文. 一类凸优化的混合下降算法[J]. 计算数学, 2012, 34(1):93-102.[13] 徐海文. 一类单调非线性变分不等式的前向加速收缩算法[J]. 数值计算与计算机应用, 2011, 32(4):259-266.[14] 徐海文. 一类变分不等式的随机步长收缩算法[J]. 工程数学学报, 2011, 8(4):461-469. |
[1] | 郦旭东. 复合凸优化的快速邻近点算法[J]. 计算数学, 2020, 42(4): 385-404. |
[2] | 申远, 李倩倩, 吴坚. 一种基于邻近点算法的变步长原始-对偶算法[J]. 计算数学, 2018, 40(1): 85-95. |
[3] | 徐海文. 一类凸优化的混合下降算法[J]. 计算数学, 2012, 34(1): 93-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||