李晓翠1, 杨小远1, 张英晗2
李晓翠, 杨小远, 张英晗. 一类随机非自伴波方程的半离散有限元近似[J]. 计算数学, 2017, 39(1): 42-58.
Li Xiaocui, Yang Xiaoyuan, Zhang Yinghan. SEMIDISCRETE FINITE ELEMENT APPROXIMATION OF STOCHASTIC NONSELFADJOINT WAVE EQUATION[J]. Mathematica Numerica Sinica, 2017, 39(1): 42-58.
Li Xiaocui1, Yang Xiaoyuan1, Zhang Yinghan2
MR(2010)主题分类:
分享此文:
[1] Jin B, Lazarov R, Pasciak J and Zhou Z. Galerkin FEM for Fractional Order Parabolic Equations with Initial Data in H-s, 0< s ≤ 1. Lecture Notes in Computer Science, 2013, 24-37.[2] Travis C and Webb G. Cosine families and abstract nonlinear second order differential equations[J]. Acta Mathematica Academiae Scientiaum Hungaricae, 1978, 32:75-96.[3] Prévôt C and Röckner R. A concise course on stochastic partial differential equations. Berlin:2007, vol. 1905 of Lecture Notes in Mathematics, Springer.[4] Cohen D and Sigg M. Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations[J]. Numerische Mathematik, 2012, 121:1-29.[5] Cohen D, Larsson S and Sigg M. A trigonometric method for the linear stochastic wave equation[J]. SIAM J. Numer. Anal., 2013, 51:204-222.[6] Lutz D. On bounded time-dependent perturbations of operator cosine functions. Aequationes Mathematicae, 1981, 23:197-203.[7] Allen E, Novosel S and Zhang Z. Finite element and difference approximation of some linear stochastic partial differential equations[J]. Stoch. Stoch. Rep., 1998, 64(1-2):117-142.[8] Baker G and Bramble J. Semidiscrete and single step full discrete approximations for second order hyperbolic equations[J]. RAIRO Numer. Anal., 1979, 13:75-100.[9] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992.[10] Lord G and Tambue A. Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise[J]. IMA J. Numer. Anal., 2012, 1-29.[11] Fujita H and Suzuki T. Evolutions problems (part1). in:P. G. Ciarlet, J. L. Lions (Eds.) Handbook of Numerical Analysis, vol II, North-Holland, Amsterdam, 1991, 789-928.[12] J. Printems. On the discretization in time of parabolic stochastic partial differential equations. Esaim Mathematical Modelling and Numerical Analysis, 2001, 1055-1078.[13] Quer-Sardanyons L and Sanz-Solé M. Space semi-discretisations for a stochastic wave equation[J]. Potential Anal., 2006, 24:303-332.[14] Palla M, Sofi A and Muscolino G. Nonlinear random vibrations of a suspended cable under wind loading. Proceedings of Fourth International Conference on Computational Stochstic Mechanics(CSM4), 2002, 159-168.[15] Pazy A. Semigroups of linear operators and applications to partial differential equations. SpringerVerlag, Berlin, 1983.[16] Kovács M, Larsson S and Lindgren F. Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise[J]. BIT Number.Math., 2012, 52(1):85-108.[17] Walsh J B. On numerical solutions of the stochastic wave equation[J]. Illinois J. Math., 2006, 50:991-1018.[18] Kovács M, Larsson S and Saedpanah F. Finite element approximation of the linear stochastic wave equation with additive noise[J]. SIAM J. Numer. Anal., 2010, 48(2):408-427.[19] Ciarlet P. The finite element method for elliptic problems. North-Holland:1978.[20] Du Q and Zhang T. Numerical approximation of some linear stochastic partial differential equations driven by special additive noise[J]. SIAM J. Numer. Anal., 2002, 40:1421-1445.[21] Anton R, Cohen D, Larsson S and Wang X. Full discretisation of semi-linear stochastic wave equations driven by multiplicative noise[J]. SIAM J. Numer. Anal., arXiv:1503.00073v1.[22] Dalang R, Khoshnevisan D, Mueller C, Nualart D and Xiao Y. A minicourse on stochastic partial differential equation. Berlin:2009, vol.1962 of Lecture Notes in Mathematics, Springer-Verlag.[23] Larsson S. Nonsmooth data error estimates with applications to the study of longtime behavior of finite element solutions of semilinear parabolic problems. 1992.[24] Georgios T, Georgios E. Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise. ESAIM:Mathematical Modelling and Numerical Analysis, 2010, 44:289-322.[25] Thomée V. Galerkin finite element methods for parabolic problems. 2006, volume 25 of Springer Series in Computational Mathematics, Springer-Verlag:Berlin.[26] Wang X. An exponential integrator scheme for time discretization of nonlinear stochastic wave equation[J]. Journal of Scientific Computing, 2014, 64:234-263.[27] Yang X, Li X, Qi R and Zhang Y. Full-discrete finite element method for stochastic hyperbolic equation[J]. Journal of Computational Mathematics, 2015, 33(5):533-556.[28] Yan Y. Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise[J]. BIT Numer. Math., 2004, 44:829-847.[29] Yan Y. Galerkin finite element methods for stochastic parabolic partial differential equations[J]. SIAM J. Numer. Anal., 2005, 43(4):1363-1384. |
[1] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[2] | 董自明, 李宏, 赵智慧, 唐斯琴. 对流扩散反应方程的局部投影稳定化连续时空有限元方法[J]. 计算数学, 2021, 43(3): 367-387. |
[3] | 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486. |
[4] | 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309. |
[5] | 戴小英. 电子结构计算的数值方法与理论[J]. 计算数学, 2020, 42(2): 131-158. |
[6] | 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116. |
[7] | 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17. |
[8] | 彭捷, 代新杰, 肖爱国, 卜玮平. 中立型随机延迟微分方程分裂步θ方法的强收敛性[J]. 计算数学, 2020, 42(1): 18-38. |
[9] | 李世顺, 祁粉粉, 邵新平. 求解定常不可压Stokes方程的两层罚函数方法[J]. 计算数学, 2019, 41(3): 259-265. |
[10] | 岳超. 高阶分裂步(θ1,θ2,θ3)方法的强收敛性[J]. 计算数学, 2019, 41(2): 126-155. |
[11] | 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211. |
[12] | 张维, 王文强. 随机微分方程改进的分裂步单支θ方法的强收敛性[J]. 计算数学, 2019, 41(1): 12-36. |
[13] | 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213. |
[14] | 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116. |
[15] | 李宏, 杜春瑶, 赵智慧. 反应扩散方程的连续时空有限元方法[J]. 计算数学, 2017, 39(2): 167-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||