曹济伟1,2
曹济伟. 求解二维时谐Maxwell方程的一种混合有限元新格式[J]. 计算数学, 2016, 38(4): 429-441.
Cao Jiwei. A NEW MIXED FINITE ELEMENT SCHEME FOR SOLVING 2D TIME-HARMONIC MAXWELL-TYPE PROBLEM[J]. Mathematica Numerica Sinica, 2016, 38(4): 429-441.
Cao Jiwei1,2
MR(2010)主题分类:
分享此文:
[1] Adams R A and Fournier J. Sobolev Spaces[M]. Second Edition, Academic Press, New York, 2003.[2] Monk P. Finite Element Methods for Maxwell Equations[M]. Clarendon Press, Oxford, 2003.[3] Buffa A. Remarks on the discretization of some noncoercive operator with applications to heterogeneous maxwell equations[J]. SIAM J. Numer. Anal., 2005, 43(1):1-18.[4] Nédélec J. Mixed finite elements in R3[J]. Numer. Math., 1980, 35(3):315-341.[5] Arnold D N, Brezzi F and Marini L D. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM J. Numer. Anal., 2001, 39(5):1749-1779.[6] Riviére B. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations:Theory and Implementation[M]. SIAM, 2008.[7] Duan H Y, Li S. Tan Roger C.E. and Zheng W.Y., A delta-regularization finite element method for a double curl problem with divergence-free constraint[J]. SIAM J. Numer. Anal., 2012, 50(6):3208-3230.[8] Duan H Y, Lin P and Tan Roger C E. C0 elements for generalized indefinite Maxwell's equations[J]. Numer. Math., 2012, 122(1):61-99.[9] Houston P, Perugia I, Schneebeli A and Schötzau D. Interior penalty method for indefinite timeharmonic Maxwell equations[J]. Numer. Math., 2005100(3):485-518.[10] Grote M J, Schneebeli A and Schötzau D. Interior penalty discontinuous Galerkin method for Maxwell's equations:Energy norm error estimates[J]. J. Comp. Appl. Math., 2007, 204(2):375-386.[11] Cockburn B, Li F and Shu C W. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations[J]. J. Comput. Phys., 2004, 194(2):588-610.[12] Otin R. Regularized Maxwell equations and nodal finite elements for electromagnetic field computations[J]. Electromagnetics, 2010, 30(1):190-204.[13] Costabel M and Dauge M. Weighted regularization of Maxwell equations in polyhedral domains[J]. Numer. Math., 2002, 93(2):239-277.[14] Brezzi F and Fortin M. Mixed and Hybrid Finite Element Methods[M]. Springer-Verlag, NewYork, 1991.[15] Girault V and Raviart P A. Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms[M]. Springer-Verlag, Berlin, 1986.[16] Duan H Y, Lin P and Tan Roger C E. Error estimates for a vectorial second-order elliptic eigenproblem by the local L2 projected C0 finite element method[J]. SIAM J. Numer. Anal., 2013, 51(3):1678-1714.[17] Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam:North-Holland, 1978.[18] Duan H Y, Jia F, Lin P and Tan Roger C E. The local L2 projected C0 finite element method for Maxwell problem[J]. SIAM J. Numer. Anal., 2009, 47(2):1274-1303.[19] Brenner S C and Scott L R. The Mathematical Theory of Finite Element Methods[M]. Third Edition, Springer-Verlag, New-York, 2008.[20] Clément P. Approximation by finite element functions using local regularization[J]. RAIRO Anal. Numer., 1975, 2(R-2):77-84.[21] Xue Y, Duan H Y and Zhang Q. A new and simple implementation of the element-local L2-projected continuous finite element method[J]. Appl. Math. Comput., 2014, 228:170-183.[22] Duan H Y, Tan Roger C E, Yang S Y and You C S. Computation of Maxwell singular solution by nodal-continuous elements[J]. J. Comput. Phys., 2014, 268:63-83.[23] Buffa A and Ciarlet P Jr. On traces for functional spaces related to Maxwell's equations Part Ⅱ:Hodge decompositions on the boundary of Lipschitz polyhedra and applications[J]. Math. Meth. Appl. Sci., 2001, 24(1):31-48.[24] Dhia A B, Bonnet-Ben, Hazard C and Lohrengel S. A Singular Field Method For the Solution of Maxwell's Equations in Polyhedral Domains[J]. SIAM J. Appl. Math., 1999, 59(6):2028-2044.[25] Duan H Y, Lin P, Saikrishnan P and Tan Roger C E. A least-squares finite element method for the magnetostatic problem in a multiply connected Lipschitz domain[J]. SIAM J. Numer. Anal., 2007, 45(6):2537-2563.[26] Duan H Y, Lin P and Tan Roger C E. Analysis of a continuous finite element method for H(curl, div)-elliptic interface problem[J]. Numer. Math., 2013, 123(4):671-707.[27] Boffi D, Brezzi F and Fortin M. Mixed Finite Element Methods and Applications[M]. Springer, 2013.[28] Arnold D N, Brezzi F, Cockburn B and Marini D. Discontinuous Galerkin Methods for Elliptic Problems[M]. Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2000, 11:89-101. |
[1] | 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309. |
[2] | 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17. |
[3] | 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211. |
[4] | 卢培培, 许学军. 高波数波动问题的多水平方法[J]. 计算数学, 2018, 40(2): 119-134. |
[5] | 石东洋, 史艳华, 王芬玲. 四阶抛物方程H1-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4): 363-380. |
[6] | 周琴, 潘雪琴, 冯民富. 对流占优的Sobolev方程的投影稳定化有限元方法[J]. 计算数学, 2014, 36(1): 99-112. |
[7] | 李先崇, 孙萍, 安静, 罗振东. 粘弹性方程一种新的分裂正定混合元法[J]. 计算数学, 2013, 35(1): 49-58. |
[8] | 石东洋, 唐启立, 董晓靖. 强阻尼波动方程的H1-Galerkin混合有限元超收敛分析[J]. 计算数学, 2012, 34(3): 317-328. |
[9] | 司红颖, 陈绍春. 双调和方程混合元的一种新格式[J]. 计算数学, 2012, 34(2): 173-182. |
[10] | 罗兴钧, 李繁春, 杨素华. 最优投影策略下解病态积分方程的快速迭代算法[J]. 计算数学, 2011, 33(1): 1-14. |
[11] | 马昌凤,梁国平,刘韶鹏. 一类波动方程有限元投影格式的误差分析[J]. 计算数学, 2002, 24(4): 501-512. |
[12] | 黄兰洁. 关于非定常不可压Navier-Stokes方程的时间高精度隐式差分方法[J]. 计算数学, 2002, 24(2): 197-218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||