王涛1,2, 刘铁钢1
王涛, 刘铁钢. 求解对流扩散方程的一致四阶紧致格式[J]. 计算数学, 2016, 38(4): 391-404.
Wang Tao, Liu Tiegang. A CONSISTENT FOURTH-ORDER COMPACT SCHEME FOR SOLVING CONVECTION-DIFFUSION EQUATION[J]. Mathematica Numerica Sinica, 2016, 38(4): 391-404.
Wang Tao1,2, Liu Tiegang1
MR(2010)主题分类:
分享此文:
[1] Hirsh R S. Highter order accurate difference solutions of fluid mechanics problems by a compact differencing technique[J]. J. Comput. Phys., 1975, (19):90-109.[2] Lele S K. Compact finite difference schemes with spectral-like resolution[J]. J. Comput. Phys., 1992, 103(1):16-42.[3] Fu D X, Ma Y W. A High Order Accurate Difference Scheme for Complex Flow Fields[J]. J. Comput. Phys., 1997, 134(1):1-15.[4] Chu P C, Fan C. A Three-Point Combined Compact Difference Scheme[J]. J. Comput. Phys., 1998, (140):370-399.[5] Tian Z F, Li Y A. Numerical solution of the incompressible Navier-Stokes equations with a threepoint fourth-order upwind compact difference schemes[C]. In Proceedings of Fourth International Conference Nonlinear Mechanic, Proceedings of Fourth International Conference Nonlinear Mechanic, pages 942-948, Shanghai, 2002.[6] Zhang K K Q, Shotorban B. A compact finite difference method on staggered grid for NavierStokes flows[J]. Int. J. Numer. Meth. Fluids, 2006, pages 1-24.[7] Liu X L, Zhang S H, Zhang H X. A new class of central compact schemes with spectral-like resolution I Linear schemes[J]. J. Comput. Phys., 2013, (248):235-256.[8] CARPENTER M. The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes[J]. J. Comput. Phys., 1993, 108:272-295.[9] WEINAN E, Liu J G. Essentially Compact Schemes for Unsteady Viscous Incompressible Flows[J]. J. Comput. Phys., 1996, (126):122-138.[10] Bertil G. The convergence rate for difference approximations to mixed intial boundary value problems[J]. SIMM J. Numer. Anal., 1981, 18(2):179-190.[11] Qin Q, Xia Z A, Tian Z F. High accuracy numerical investigation of double-diffusive convection in a rectangular enclosure with horizontal temperature and concentration gradients[J]. Int. Heat Mass Transf., 2014, (71):405-423.[12] Shu C W, Osher S. Efficient implementation of Essentially Non-Oscillatory shock capturing Schemes[J]. J. Comput. Phys., 1988, 2(77):439-471.[13] GOTTLIEB S, Shu C W. Total variation diminishing Runge-Kutta Schemes[J]. Math. Comp., 1998, 67(21):73-85.[14] Zigg D W. Aspects of Linear Stability Analysis for Highter-order Finite-difference Methods[J]. AIAA, 1997, (1939).[15] Spotz W F, Carey G F. High-order compact scheme for the steady stream-functionvorticity equations[J]. Int. J. Numer. Meth. in Engineering, 1995, 38:3497-3512.[16] Gupta M M. A fourth-order Poisson solver[J]. J. Comput. Phys., 1984, 55(1):166-172.[17] Ghia K N G U, Shin C T. High-Re solutions for incompressible folw using the Navier-Stokes equations and a multigrid method[J]. J. Comput. Phys., 1982, 48:387-411. |
[1] | 肖飞雁, 李旭旭, 陈飞盛. 非线性延迟积分微分方程连续Runge-Kutta方法的稳定性分析[J]. 计算数学, 2017, 39(1): 1-13. |
[2] | 周琴, 潘雪琴, 冯民富. 对流占优的Sobolev方程的投影稳定化有限元方法[J]. 计算数学, 2014, 36(1): 99-112. |
[3] | 常晓蓉, 冯民富. 非定常对流扩散问题的非协调局部投影有限元方法[J]. 计算数学, 2011, 33(3): 275-288. |
[4] | 余越昕. 非线性中立型延迟积分微分方程一般线性方法的稳定性分析[J]. 计算数学, 2010, 32(2): 125-134. |
[5] | 白艳红, 冯民富, 孔花. 非定常对流占优扩散方程的非协调RFB稳定化方法分析[J]. 计算数学, 2009, 31(4): 363-378. |
[6] | 金丽,张立卫,肖现涛,. 一个求解约束非线性优化问题的微分方程方法[J]. 计算数学, 2007, 29(2): 163-176. |
[7] | 余越昕,李寿佛,. 非线性中立型延迟微分方程单支方法的数值稳定性[J]. 计算数学, 2006, 28(4): 357-364. |
[8] | 孙澈,曹松. 对流占优扩散问题的经济型流线扩散有限元法[J]. 计算数学, 2004, 26(3): 367-384. |
[9] | 徐阳,赵景军,刘明珠. 二阶延迟微分方程θ-方法的TH-稳定性[J]. 计算数学, 2004, 26(2): 189-192. |
[10] | 张文博,孙澈. 线性定常对流占优对流扩散问题的有限体积——流线扩散有限元法[J]. 计算数学, 2004, 26(1): 93-8. |
[11] | 王文强,李寿佛. 非线性刚性变延迟微分方程单支方法的数值稳定性[J]. 计算数学, 2002, 24(4): 417-430. |
[12] | 孙澈,赵云凯. 对流扩散问题的交替方向差分-流线扩散格式[J]. 计算数学, 2002, 24(3): 291-310. |
[13] | 丛玉豪,杨彪,匡蛟勋. 广义中立型系统的渐近稳定性及数值分析[J]. 计算数学, 2001, 23(4): 457-468. |
[14] | 丛玉豪,匡蛟勋. 数值求解延时微分方程的步长准则[J]. 计算数学, 2001, 23(2): 139-144. |
[15] | 康彤,余德浩. 二维发展型对流占优扩散方程的FD-SD法的后验误差估计[J]. 计算数学, 2000, 22(4): 487-500. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||