• 论文 • 上一篇    下一篇

求解对流扩散方程的一致四阶紧致格式

王涛1,2, 刘铁钢1   

  1. 1. 北京航空航天大学数学与系统科学学院, 北京 100191;
    2. 北方民族大学预科教育学院, 银川 750021
  • 收稿日期:2015-10-23 出版日期:2016-12-15 发布日期:2016-10-13
  • 基金资助:

    国家自然科学基金资助项目(No.91130019.No.10931004 and No.11601013).

王涛, 刘铁钢. 求解对流扩散方程的一致四阶紧致格式[J]. 计算数学, 2016, 38(4): 391-404.

Wang Tao, Liu Tiegang. A CONSISTENT FOURTH-ORDER COMPACT SCHEME FOR SOLVING CONVECTION-DIFFUSION EQUATION[J]. Mathematica Numerica Sinica, 2016, 38(4): 391-404.

A CONSISTENT FOURTH-ORDER COMPACT SCHEME FOR SOLVING CONVECTION-DIFFUSION EQUATION

Wang Tao1,2, Liu Tiegang1   

  1. 1. School of Mathematics and Symtems Science, Beihang University, Beijing 100191, China;
    2. College of Preparatory Education, Northern university for Nationalities, Yinchuan 750021, China
  • Received:2015-10-23 Online:2016-12-15 Published:2016-10-13
目前,许多高精度差分格式,由于未成功地构造与其精度匹配的稳定的边界格式,不得不采用低精度的边界格式.本文针对对流扩散方程证明了存在一致四阶紧致格式,它的边界点的计算格式和内点的计算格式的截断误差主项保持一致,给出了具体内点和边界格式;并分析了此半离散格式的渐近稳定性.数值结果表明该格式是四阶精度;在对流占优情况下,本文边界格式的数值结果比四阶精度的显式差分格式的的数值结果的数值振荡小,取得了不错的效果,理论结果得到了数值验证;驱动方腔数值结果显示,本文对N-S方程的离散格式具有很好的可靠性,适合对复杂流体流动的数值模拟和研究.
At present, many high accuracy difference scheme, due to not successfully constructed and its matching accuracy and stable boundary format, have to adopt the low accuracy of boundary format. This paper proves the existence of convection diffusion equation to be consistent fourth-order compact schemes and the boundary point calculation format is consistent with the truncation error of additional qualifications and gives the concrete inner point and boundary scheme; the asymptotic stability of discrete scheme is analyzed. Numerical example shows that the scheme is fourth order accuracy; under the condition of convection-dominant, numerical example shows that the numerical oscillation that is achieved by the boundary scheme of this paper is smaller than four order accuracy of explicit difference scheme, good results have been achieved and theoretical results obtained numerical validation.The simulation results of the regularized driven cavity are good agreement with the existing solutions in the literature and shows the discrete scheme of N-S equation has a good reliability, suitable for the research of complex fluid flow.

MR(2010)主题分类: 

()
[1] Hirsh R S. Highter order accurate difference solutions of fluid mechanics problems by a compact differencing technique[J]. J. Comput. Phys., 1975, (19):90-109.

[2] Lele S K. Compact finite difference schemes with spectral-like resolution[J]. J. Comput. Phys., 1992, 103(1):16-42.

[3] Fu D X, Ma Y W. A High Order Accurate Difference Scheme for Complex Flow Fields[J]. J. Comput. Phys., 1997, 134(1):1-15.

[4] Chu P C, Fan C. A Three-Point Combined Compact Difference Scheme[J]. J. Comput. Phys., 1998, (140):370-399.

[5] Tian Z F, Li Y A. Numerical solution of the incompressible Navier-Stokes equations with a threepoint fourth-order upwind compact difference schemes[C]. In Proceedings of Fourth International Conference Nonlinear Mechanic, Proceedings of Fourth International Conference Nonlinear Mechanic, pages 942-948, Shanghai, 2002.

[6] Zhang K K Q, Shotorban B. A compact finite difference method on staggered grid for NavierStokes flows[J]. Int. J. Numer. Meth. Fluids, 2006, pages 1-24.

[7] Liu X L, Zhang S H, Zhang H X. A new class of central compact schemes with spectral-like resolution I Linear schemes[J]. J. Comput. Phys., 2013, (248):235-256.

[8] CARPENTER M. The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes[J]. J. Comput. Phys., 1993, 108:272-295.

[9] WEINAN E, Liu J G. Essentially Compact Schemes for Unsteady Viscous Incompressible Flows[J]. J. Comput. Phys., 1996, (126):122-138.

[10] Bertil G. The convergence rate for difference approximations to mixed intial boundary value problems[J]. SIMM J. Numer. Anal., 1981, 18(2):179-190.

[11] Qin Q, Xia Z A, Tian Z F. High accuracy numerical investigation of double-diffusive convection in a rectangular enclosure with horizontal temperature and concentration gradients[J]. Int. Heat Mass Transf., 2014, (71):405-423.

[12] Shu C W, Osher S. Efficient implementation of Essentially Non-Oscillatory shock capturing Schemes[J]. J. Comput. Phys., 1988, 2(77):439-471.

[13] GOTTLIEB S, Shu C W. Total variation diminishing Runge-Kutta Schemes[J]. Math. Comp., 1998, 67(21):73-85.

[14] Zigg D W. Aspects of Linear Stability Analysis for Highter-order Finite-difference Methods[J]. AIAA, 1997, (1939).

[15] Spotz W F, Carey G F. High-order compact scheme for the steady stream-functionvorticity equations[J]. Int. J. Numer. Meth. in Engineering, 1995, 38:3497-3512.

[16] Gupta M M. A fourth-order Poisson solver[J]. J. Comput. Phys., 1984, 55(1):166-172.

[17] Ghia K N G U, Shin C T. High-Re solutions for incompressible folw using the Navier-Stokes equations and a multigrid method[J]. J. Comput. Phys., 1982, 48:387-411.
[1] 肖飞雁, 李旭旭, 陈飞盛. 非线性延迟积分微分方程连续Runge-Kutta方法的稳定性分析[J]. 计算数学, 2017, 39(1): 1-13.
[2] 周琴, 潘雪琴, 冯民富. 对流占优的Sobolev方程的投影稳定化有限元方法[J]. 计算数学, 2014, 36(1): 99-112.
[3] 常晓蓉, 冯民富. 非定常对流扩散问题的非协调局部投影有限元方法[J]. 计算数学, 2011, 33(3): 275-288.
[4] 余越昕. 非线性中立型延迟积分微分方程一般线性方法的稳定性分析[J]. 计算数学, 2010, 32(2): 125-134.
[5] 白艳红, 冯民富, 孔花. 非定常对流占优扩散方程的非协调RFB稳定化方法分析[J]. 计算数学, 2009, 31(4): 363-378.
[6] 金丽,张立卫,肖现涛,. 一个求解约束非线性优化问题的微分方程方法[J]. 计算数学, 2007, 29(2): 163-176.
[7] 余越昕,李寿佛,. 非线性中立型延迟微分方程单支方法的数值稳定性[J]. 计算数学, 2006, 28(4): 357-364.
[8] 孙澈,曹松. 对流占优扩散问题的经济型流线扩散有限元法[J]. 计算数学, 2004, 26(3): 367-384.
[9] 徐阳,赵景军,刘明珠. 二阶延迟微分方程θ-方法的TH-稳定性[J]. 计算数学, 2004, 26(2): 189-192.
[10] 张文博,孙澈. 线性定常对流占优对流扩散问题的有限体积——流线扩散有限元法[J]. 计算数学, 2004, 26(1): 93-8.
[11] 王文强,李寿佛. 非线性刚性变延迟微分方程单支方法的数值稳定性[J]. 计算数学, 2002, 24(4): 417-430.
[12] 孙澈,赵云凯. 对流扩散问题的交替方向差分-流线扩散格式[J]. 计算数学, 2002, 24(3): 291-310.
[13] 丛玉豪,杨彪,匡蛟勋. 广义中立型系统的渐近稳定性及数值分析[J]. 计算数学, 2001, 23(4): 457-468.
[14] 丛玉豪,匡蛟勋. 数值求解延时微分方程的步长准则[J]. 计算数学, 2001, 23(2): 139-144.
[15] 康彤,余德浩. 二维发展型对流占优扩散方程的FD-SD法的后验误差估计[J]. 计算数学, 2000, 22(4): 487-500.
阅读次数
全文


摘要