• 论文 • 上一篇    下一篇

拟等级网格下非线性延迟微分方程间断有限元法

许秀秀, 黄秋梅   

  1. 北京工业大学北京科学与工程计算研究院, 北京 100124
  • 收稿日期:2015-12-29 出版日期:2016-08-15 发布日期:2016-09-08
  • 通讯作者: 黄秋梅,Email:qmhuang@bjut.edu.cn.
  • 基金资助:

    国家自然科学基金面上项目(11571027),北京市科技新星计划(Z1511000003150140),北京市属高等学校高层次人才引进与培养计划项目(CIT&TCD201504012),北京市教委科技面上项目(KM201510005032)资助.

许秀秀, 黄秋梅. 拟等级网格下非线性延迟微分方程间断有限元法[J]. 计算数学, 2016, 38(3): 281-288.

Xu Xiuxiu, Huang Qiumei. DISCONTINUOUS GALERKIN METHODS ON QUASI-GRADED MESHES FOR DELAY DIFFERENTIAL EQUATIONS WITH NONLINEAR DELAY[J]. Mathematica Numerica Sinica, 2016, 38(3): 281-288.

DISCONTINUOUS GALERKIN METHODS ON QUASI-GRADED MESHES FOR DELAY DIFFERENTIAL EQUATIONS WITH NONLINEAR DELAY

Xu Xiuxiu, Huang Qiumei   

  1. Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing 100124, China
  • Received:2015-12-29 Online:2016-08-15 Published:2016-09-08
本文利用间断有限元法求解非线性延迟微分方程,在拟等级网格下,给出非线性延迟微分方程间断有限元解的整体收敛阶和局部超收敛阶,数值实验验证了理论结果的正确性.
This paper is concerned with the application of the discontinuous Galerkin method for delay differential equations (DDEs) with nonlinear delay. Based on quasi-graded meshes, we get the global convergence and local superconvergence of discontinuous Galerkin solutions for DDEs. Theoretical results are illustrated by numerical examples.

MR(2010)主题分类: 

()
[1] Bellen A and Zennaro M. Numerical methods for delay differential equations[M]. Oxford University Press, Oxford, 2003.

[2] Brunner H. Collocation methods for Volterra integral and related functional differential equations[M]. Cambridge University Press, Cambridge, 2004.

[3] 李寿佛. 刚性微分方程算法理论[M]. 湖南科学技术出版社, 1997.

[4] 匡蛟勋. 泛函微分方程的数值处理[M]. 科学出版社, 1999.

[5] Brunner H. Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays[J]. Front. Math. China, 2009, 4:3-22.

[6] Lasaint P and Raviart P A. On a finite element method for solving the neutron tranport equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations[J]. C. de Boor, ed., Academic Press, New York, 1974, 89-145.

[7] Schötzau D and Schwab C. An hp a priori error analysis of the DG time-stepping method for initial value problems[J]. Calcolo, 2000, 37:207-232.

[8] Li D and Zhang C. Superconvergence of a discontinuous Galerkin method for first-order linear delay differential equations[J]. J. Comput. Math., 2011, 29:574-588.

[9] Huang Q, Xie H and Brunner H. Superconvergence of discontinuous Galerkin solutions for delay differential equation of pantograph type[J]. SIAM. J. Sci. Comput., 2011, 33:2664-2684.

[10] Brunner H, Huang Q and Xie H. Discontinuous Galerkin methods for delay differential equations of pantograph type[J]. SIAM. J. Numer. Anal., 2010, 48:1944-1967.

[11] Huang Q, Xie H and Brunner H. The hp discontinuous Galerkin method for delay differential equations with nonlinear vanishing delay[J]. SIAM. J. Sci. Comput., 2013, 35:1604-1620.

[12] Bellen A. Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay[J]. IMA J. Numer. Anal., 2002, 22:529-536.

[13] Xu Y and Liu M. H-stability of Runge-Kutta methods with general variable stepsize for pantograph equation[J]. Appl. Math. Comput., 2004, 148:881-892.

[14] Huang Q, Xu X and Brunner H. Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type[J]. Discrete Cont. DYN-A, 2016, 36:5423-5443.
[1] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[2] 张根根, 肖爱国, 王晚生. 中立型比例延迟微分系统线性θ-方法的渐近估计[J]. 计算数学, 2020, 42(4): 419-434.
[3] 彭捷, 代新杰, 肖爱国, 卜玮平. 中立型随机延迟微分方程分裂步θ方法的强收敛性[J]. 计算数学, 2020, 42(1): 18-38.
[4] 杨水平. 一类分数阶多项延迟微分方程的Jacobi谱配置方法[J]. 计算数学, 2017, 39(1): 98-114.
[5] 宋福义, 高建芳. 一类非线性延迟微分方程数值解的振动性分析[J]. 计算数学, 2015, 37(4): 425-438.
[6] 王文强, 李东方. 线性变系数中立型变延迟微分方程谱方法的收敛性[J]. 计算数学, 2012, 34(1): 68-80.
[7] 范振成, 宋明辉. 非全局Lipschitz条件下随机延迟微分方程Euler方法的收敛性[J]. 计算数学, 2011, 33(4): 337-344.
[8] 高建芳, 张艳英, 唐黎明. 种群动力系统的数值解的振动性分析[J]. 计算数学, 2011, 33(4): 357-366.
[9] 谭英贤, 甘四清, 王小捷. 随机延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2011, 33(1): 25-36.
[10] 王文强, 陈艳萍. 非线性随机延迟微分方程Heun方法的数值稳定性[J]. 计算数学, 2011, 33(1): 69-76.
[11] 王文强, 陈艳萍. 线性中立型随机延迟微分方程Euler方法的均方稳定性[J]. 计算数学, 2010, 32(2): 206-212.
[12] 范振成. 随机延迟微分方程的全隐式Euler方法[J]. 计算数学, 2009, 31(3): 287-298.
[13] 王晚生,李寿佛,苏凯,. 求解非线性中立型延迟微分方程一类线性多步方法的收敛性[J]. 计算数学, 2008, 30(2): 157-166.
[14] 王文强,黄山,李寿佛,. 非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性[J]. 计算数学, 2007, 29(2): 217-224.
[15] 黄乘明,李文皓,. 一类二阶延迟微分方程梯形方法的延迟依赖稳定性分析[J]. 计算数学, 2007, 29(2): 155-162.
阅读次数
全文


摘要