• 论文 • 上一篇    下一篇

从离散速度模型到矩方法

蔡振宁1, 樊玉伟2, 李若3   

  1. 1. 杜克大学数学系, 美国;
    2. 北京大学数学科学学院, 北京 100871;
    3. 北京大学数学科学学院, 应用物理和技术中心, 北京 100871
  • 收稿日期:2015-09-07 出版日期:2016-08-15 发布日期:2016-09-08
  • 基金资助:

    国家自然科学基金的资助(No.11325102和No.91330205).

蔡振宁, 樊玉伟, 李若. 从离散速度模型到矩方法[J]. 计算数学, 2016, 38(3): 227-244.

Cai Zhenning, Fang Yuwei, Li Ruo. FROM DISCRETE VELOCITY MODEL TO MOMENT METHOD[J]. Mathematica Numerica Sinica, 2016, 38(3): 227-244.

FROM DISCRETE VELOCITY MODEL TO MOMENT METHOD

Cai Zhenning1, Fang Yuwei2, Li Ruo3   

  1. 1. Department of Mathematics, Duke University, NC, USA;
    2. School of Mathematical Sciences, Peking University, Beijing 100871, China;
    3. CAPT & School of Mathematical Sciences, Peking University, Beijing 100871, China
  • Received:2015-09-07 Online:2016-08-15 Published:2016-09-08
为了求解动理学方程,我们通过研究一维情形下对离散速度模型的离散速度点的进行自适应的技术,发现可以自然地得到Grad矩方程组.作为一个统一的认识,矩方程组可以看作是对离散速度点自适应的离散速度模型,而离散速度模型可以看作是取特别形式的“矩”的矩方程组.这使得我们可以在一致的框架下来理解离散速度模型和矩方法,而不是将它们对立起来.为了建立这样的一致框架,最近在[2]中发展的正则化理论是根本性的.
In numerical approaches for the Boltzmann equation, the discrete velocity model and the moment method are formally very different. In this paper, we try to show the intrinsic connection between these two approaches. Precisely, the Grad type moment method with appropriate closure can be regarded as a discrete velocity model with some adaptivities in setup of the velocity points. The globally hyperbolic regulazation of the moment method plays an essential role in connecting both approaches together.

MR(2010)主题分类: 

()
[1] Cai Z, Fan W, Li R, Lu T and Yao W. Quantum hydrodynamic model of density functional theory[J]. J. Math. Chem., 2013, 51(5).

[2] Cai Z, Fan Y and Li R. Globally hyperbolic regularization of Grad's moment system in one dimensional space[J]. Comm. Math. Sci., 2013, 11(2):547-571.

[3] Cai Z, Fan Y and Li R. Globally hyperbolic regularization of Grad's moment system[J]. Comm. Pure Appl. Math., 2014, 67(3):464-518.

[4] Cai Z, Fan Y, Li R, Lu T and Wang Y. Quantum hydrodynamics models by moment closure of Wigner equation[J]. J. Math. Phys., 2012, 53:103503.

[5] Cai Z and Li R. Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation. SIAM J. Sci. Comput., 2010, 32(5):2875-2907.

[6] Cai Z, Li R and Qiao Z. Globally hyperbolic regularized moment method with applications to microflow simulation[J]. Computers and Fluids, 2013, 81:95-109.

[7] Di Y N, Kou Z Z and Li R. High order moment closure for vlasov-maxwell equations[J]. Front. Math. China, 2015, 10(5):1-87-1100.

[8] Grad H. On the kinetic theory of rarefied gases[J]. Comm. Pure Appl. Math., 1949, 2(4):331-407.
[1] 曹阳, 陈莹婷. 正则化HSS预处理鞍点矩阵的特征值估计[J]. 计算数学, 2020, 42(1): 51-62.
[2] 邱安东, 杨娇娇, 冯涵, 杨周旺. 组模偏正则化及其应用[J]. 计算数学, 2018, 40(4): 450-469.
[3] 孙瑶, 陈博. Helmholtz方程Cauchy问题的间接积分方程方法[J]. 计算数学, 2018, 40(3): 254-270.
[4] 陈云, 郭宝裕, 马祥园. 基于分数阶微积分正则化的图像处理[J]. 计算数学, 2017, 39(4): 393-406.
[5] 程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308.
[6] 贾现正, 张大利, 李功胜, 池光胜, 李慧玲. 空间-时间分数阶变系数对流扩散方程微分阶数的数值反演[J]. 计算数学, 2014, 36(2): 113-132.
[7] 李繁春, 杨素华, 罗兴钧, 彭玉兵. 求解第一类Fredholm积分方程的多层迭代算法[J]. 计算数学, 2013, 35(3): 225-238.
[8] 王倩, 戴华. 求解离散不适定问题的正则化GMERR方法[J]. 计算数学, 2013, 35(2): 195-204.
[9] 罗兴钧, 陈维君, 范林秀, 李繁春. 截断策略下求解第一类积分方程离散的DSM方法[J]. 计算数学, 2012, 34(2): 139-152.
[10] 罗兴钧, 李繁春, 杨素华. 最优投影策略下解病态积分方程的快速迭代算法[J]. 计算数学, 2011, 33(1): 1-14.
[11] 陈星玎, 胡齐芽. 基于几何非协调分解的Lagrange乘子区域分解方法[J]. 计算数学, 2009, 31(3): 299-308.
[12] 陈群, 黄标章, 刘继军. 介质导电率成像数值反演的正则化方法[J]. 计算数学, 2009, 31(1): 51-64.
[13] 苏京勋,刘继军,. 一类抛物型方程系数反问题的分裂算法[J]. 计算数学, 2008, 30(1): 99-12.
[14] 杨素华,罗兴钧,邱修峰,. 求Abel型积分方程数值解的正则化方法[J]. 计算数学, 2008, 30(1): 17-24.
[15] 傅初黎,李洪芳,熊向团,. 不适定问题的迭代Tikhonov正则化方法[J]. 计算数学, 2006, 28(3): 237-246.
阅读次数
全文


摘要