周茜, 雷渊, 乔文龙
周茜, 雷渊, 乔文龙. 一类线性约束矩阵不等式及其最小二乘问题[J]. 计算数学, 2016, 38(2): 171-186.
Zhou Xi, Lei Yuan, Qiao Wenlong. A CLASS OF LINEAR CONSTRAINED MATRIX INEQUALITY AND ITS LEAST SQUARES PROBLEM[J]. Mathematica Numerica Sinica, 2016, 38(2): 171-186.
Zhou Xi, Lei Yuan, Qiao Wenlong
MR(2010)主题分类:
分享此文:
[1] Jbilou K, Messaoudi A, Sadok H. Global FOM and GMRES algorithms for matrix equations[J]. Applied Numerical Mathematics, 1999, 31(1):49-63.[2] Friswell M, Mottershead J E. Finite element model updating in structural dynamics[M]. Springer Science & Business Media, 1995.[3] Zhang J H. Modeling of dynamical systems[M]. Beijing:National Defence and Industry Press, 2000.[4] Chen T W, Francis B, Hagiwara T. Optimal sampled-data control systems[J]. Proceedings of the IEEE, 1998, 86(4):741-741.[5] Penrose R. A generalized inverse for matrices[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1955, 51(3):406-413.[6] Dai H, Lancaster P. Linear matrix equations from an inverse problem of vibration theory[J]. Linear Algebra and Its Applications, 1996, 246:31-47.[7] 廖安平, 白中治. 矩阵方程ATXA=D的双对称最小二乘解[J]. 计算数学, 2002, 24(1):9-20.[8] 王明辉, 魏木生, 姜同松. 子矩阵约束下矩阵方程AXB=E的极小范数最小二乘对称解[J]. 计算数学, 2007, 29(2):147-154.[9] 袁仕芳, 廖安平, 雷渊. 矩阵方程AXB+CYD=E的对称极小范数最小二乘解[J]. 计算数学, 2007, 29(2):203-216.[10] 周海林. 矩阵方程AXB+CYD=E的M对称解的迭代算法[J]. 计算数学, 2015, 37(2):186-198.[11] 李姣芬, 彭振赟, 彭靖静. 矩阵不等式约束下矩阵方程AX=B的双对称解[J]. 计算数学, 2013, 37(2):137-150.[12] Andersson L E, Elfving T. A constrained procrustes problem[J]. SIAM Journal on Matrix Analysis and Applications, 1997, 18(1):124-139.[13] Flanders H, Wimmer H K. On the matrix equations AX-XB=C and AX-YB=C[J]. SIAM Journal on Applied Mathematics, 1977, 32(4):707-710.[14] Xu G P, Wei M S, Zheng D S. On solutions of matrix equation AXB+CYD=F[J]. Linear Algebra and Its Applications, 1998, 279(1):93-109.[15] Paige C C, Saunders M A. Towards a generalized singular value decomposition[J]. SIAM Journal on Numerical Analysis, 1981, 18(3):398-405.[16] Peng Z Y, Hu X Y. The reflexive and anti-reflexive solutions of the matrix equation AX=B[J]. Linear Algebra and Its Applications, 2003, 375:147-155.[17] Bouyouli R, Jbilou K, Sadaka R, Sadok H. Convergence properties of some block Krylov subspace methods for multiple linear systems[J]. Journal of Computational and Appled Mathematies, 2006, 196(2):498-511.[18] Darnell D, Morgan R B, Wileox W. Deflated GMRES for systems with multiple shifts and multiple right-hand sides[J]. Linear Algebra and its Applieations, 2008, 429(10):2415-2434.[19] Salkuyeh D K. CG-type algorithms to solve symmetric matrix equations[J]. Applied Mathematics and Computation, 2006, 172(2):985-999.[20] Guo K H, Hu X Y, Zhang L. A new iteration method for the matrix equation AX=B[J]. Applied Mathematics and Computation, 2007, 187(2):1434-1441.[21] Li F L, Gong L S, Hu X Y, Zhang L. Successive projection iterative method for solving matrix AX=B[J]. Journal of Computational and Appled Mathematic, 2010, 234(8):2405-2410.[22] Herman G T. A relaxation method for reconstructing objects from noisy X-rays[J]. Mathematical Programming, 1975, 8(1):1-19.[23] Herman G T. Image Reconstruction from Projections:The Fundamentals of Computerized Tomog-raphy[M]. Academic Press, New York, 1982.[24] Bramley R, Winnicka B. Solving linear inequalities in a least squares sense[J]. SIAM Journal on Scientific Computing, 1996, 17(1):275-286.[25] Pinar M C. Newton's method for linear inequality systems[J]. European Journal of Operational Reserach, 1998, 107(3):710-719.[26] 王日爽. 泛函分析与最优化理论[M]. 北京:北京航天航空大学出版社, 2003.[27] Moreau J J. Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires[J]. Comptes Rendus de l'Académie des sciences, Paris, 1962, 255:238-240.[28] Wierzbicki A P, Kurcyusz S. Projection on a cone, penalty functionals and duality theory for problems with inequaltity constraints in Hilbert space[J]. SIAM Journal on Control and Optimization, 1977, 15(1):25-56. |
[1] | 缪树鑫. 关于“求解加权线性最小二乘问题的一类预处理GAOR方法”一文的注记[J]. 计算数学, 2022, 44(1): 89-96. |
[2] | 王丽, 罗玉花, 王广彬. 求解加权线性最小二乘问题的一类预处理GAOR方法[J]. 计算数学, 2020, 42(1): 63-79. |
[3] | 李姣芬, 吕晓帆, 李涛, 赖梦露. 界约束下算子方程最小二乘问题的条件梯度法[J]. 计算数学, 2016, 38(4): 372-390. |
[4] | 李姣芬, 彭振, 彭靖静. 矩阵不等式约束下矩阵方程AX=B的双对称解[J]. 计算数学, 2013, 35(2): 137-150. |
[5] | 裘渔洋,张振跃,. 对称约束平衡Procrustes问题的一个简单解法[J]. 计算数学, 2007, 29(3): 322-324. |
[6] | 刘新国,王卫国. 关于结构KKT方程组的扰动分析[J]. 计算数学, 2004, 26(2): 179-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||