• 论文 • 上一篇    下一篇

非线性分数阶反应扩散方程组的间断时空有限元方法

刘金存, 李宏, 刘洋, 何斯日古楞   

  1. 内蒙古大学数学科学学院, 呼和浩特 010021
  • 收稿日期:2015-04-23 出版日期:2016-04-15 发布日期:2016-05-13
  • 基金资助:

    国家自然科学基金(11361035,11301258)和内蒙古自然科学基金(2012MS0106,2012MS0108,2014BS0101)资助项目.

刘金存, 李宏, 刘洋, 何斯日古楞. 非线性分数阶反应扩散方程组的间断时空有限元方法[J]. 计算数学, 2016, 38(2): 143-160.

Liu Jincun, Li Hong, Liu Yang, He Siriguleng. DISCONTINUOUS SPACE-TIME FINITE ELEMENT METHOD FOR THE SYSTEM OF NONLINEAR FRACTIONAL REACTION-DIFFUSION EQUATIONS[J]. Mathematica Numerica Sinica, 2016, 38(2): 143-160.

DISCONTINUOUS SPACE-TIME FINITE ELEMENT METHOD FOR THE SYSTEM OF NONLINEAR FRACTIONAL REACTION-DIFFUSION EQUATIONS

Liu Jincun, Li Hong, Liu Yang, He Siriguleng   

  1. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
  • Received:2015-04-23 Online:2016-04-15 Published:2016-05-13
利用时间间断空间连续的时空有限元方法构造了空间分数阶反应扩散方程组的可以逐时间层求解的全离散格式.在时间离散区间上,采用Radau积分公式,将插值理论与有限元理论相结合,给出了全离散格式解的存在唯一性结果,并证明了所给格式是无条件稳定的,进而详细给出最优阶L(L2)模误差估计过程.最后用数值算例验证了理论分析的正确性.
A time-stepping fully discrete scheme for the system of space fractional reaction-diffusion equations is constructed by the space-time finite element method, which is discontinuous in time and continuous in space. Existence and uniqueness for the solution of the fully discrete scheme are analyzed by combining finite element theory and interpolation theory through the Radau integral formula in time discrete intervals. The scheme is proved to be stable unconditionally. The optimal order error estimates in L(L2) norm are presented in detail. Numerical examples are given to illustrate the validity of theoretical analysis.

MR(2010)主题分类: 

()
[1] Podlubny I. Fractional Differential Equations[M]. New York:Academic Press, 1999.

[2] Liu F, Zhuang P, Anh V, Turner I, Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation[J]. Appl. Math. Comput., 2007, 191:12-20.

[3] Sun Z Z, Wu X N. A fully discrete difference scheme for a diffusion-wave system[J]. Appl. Numer. Math., 2006, 56:193-209.

[4] Yuste S B, Acedo L. An explicit finite difference method and a new von Numann-type stability analysis for fractional diffusion equation[J]. SIAM J. Numer. Anal., 2005, 42:1862-1874.

[5] Li X J, Xu C J. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation[J]. Commun. Comput. Phys., 2010, 8(5):1016-1051.

[6] Ervin V J, Roop J P. Variational formaulation for the stationary fractional advection dispersion equation[J]. Numer. Methods Partial Differential Equations, 2006, 22(3):558-576.

[7] Deng W H. Finite element method for the space and time fractional Fokker-Planck equation[J]. SIAM J. Numer. Anal., 2008, 47:204-226.

[8] Zhang H, Liu F, Anh V. Galerkin finite element approximation of symmetric space-fractional partial differential equations[J]. Appl. Math. Comput., 2010, 217:2534-2545.

[9] Li C P, Zhao Z G, Chen Y Q. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion[J]. Comput. Math. Appl., 2011, 62:855-875.

[10] Ford N J, Xiao J Y, Yan Y B. A finite element method for time fractional partial differential equations[J]. Fract. Calc. Appl. Anal., 2011, 14:454-574.

[11] Bu W P, Liu X T, Tang Y F, Yang J Y. Finite element multigrid method for multi-term time fractional advection diffusion equations[J]. Int. J. Model. Simul. Sci. Comput., 2015, 6 DOI:10.1142/S1793962315400012.

[12] Mustapha K, McLean W. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation[J]. Numer. Algor., 2011, 56:159-184.

[13] Zheng Y Y, Li C P, Zhao Z G. A fully discrete discontinuous Galerkin method for nonlinear fractional Fokker-Planck equation[J]. Math. Probl. Eng., 2010, Article ID 279038, 26 pages.

[14] 刘金存, 李宏. A space-time finite element method for the semilinear fractional diffusion equation:the discontinuous Galerkin method[J]. 应用数学, 2013, 26(4):853-862.

[15] Ahmad B, Alhothuali M S, Alsulami H H, Kirane M, Timoshin S. On nonlinear nonlocal systems of reaction diffusion equations[J]. Abstr. Appl. Anal., 2014, Article ID 804784, 6 pages.

[16] Karakashian C, Makridakis C. A space-time finite element method for the nonlinear Schrödinger the discontinuous Galerkin method[J]. Math. Comp., 1998, 97(222):479-499.

[17] Yang Q, Liu F, Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 2010, 34:200-218.

[18] Davis P J, Rabinowitz P. Methods of Numerical Integration[M]. New York:Academic Press, 1975.

[19] Brenner B C, Scott L R. The Mathematical Theory of Finite Element Methods[M]. New York:Springer-verlag, 1994.
[1] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[2] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
[3] 陈明卿, 谢小平. 随机平面线弹性问题的一类弱Galerkin方法[J]. 计算数学, 2021, 43(3): 279-300.
[4] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[5] 董自明, 李宏, 赵智慧, 唐斯琴. 对流扩散反应方程的局部投影稳定化连续时空有限元方法[J]. 计算数学, 2021, 43(3): 367-387.
[6] 曾玉平, 翁智峰, 胡汉章. 简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计[J]. 计算数学, 2021, 43(2): 162-176.
[7] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226.
[8] 房明娟, 阳莺, 唐鸣. 稳态Poisson-Nernst-Planck方程的残量型后验误差估计[J]. 计算数学, 2021, 43(1): 17-32.
[9] 王然, 张怀, 康彤. 求解带有非线性边界条件的涡流方程的A-φ解耦有限元格式[J]. 计算数学, 2021, 43(1): 33-55.
[10] 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109.
[11] 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
[12] 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418.
[13] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[14] 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206.
[15] 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116.
阅读次数
全文


摘要