刘金存, 李宏, 刘洋, 何斯日古楞
刘金存, 李宏, 刘洋, 何斯日古楞. 非线性分数阶反应扩散方程组的间断时空有限元方法[J]. 计算数学, 2016, 38(2): 143-160.
Liu Jincun, Li Hong, Liu Yang, He Siriguleng. DISCONTINUOUS SPACE-TIME FINITE ELEMENT METHOD FOR THE SYSTEM OF NONLINEAR FRACTIONAL REACTION-DIFFUSION EQUATIONS[J]. Mathematica Numerica Sinica, 2016, 38(2): 143-160.
Liu Jincun, Li Hong, Liu Yang, He Siriguleng
MR(2010)主题分类:
分享此文:
[1] Podlubny I. Fractional Differential Equations[M]. New York:Academic Press, 1999.[2] Liu F, Zhuang P, Anh V, Turner I, Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation[J]. Appl. Math. Comput., 2007, 191:12-20.[3] Sun Z Z, Wu X N. A fully discrete difference scheme for a diffusion-wave system[J]. Appl. Numer. Math., 2006, 56:193-209.[4] Yuste S B, Acedo L. An explicit finite difference method and a new von Numann-type stability analysis for fractional diffusion equation[J]. SIAM J. Numer. Anal., 2005, 42:1862-1874.[5] Li X J, Xu C J. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation[J]. Commun. Comput. Phys., 2010, 8(5):1016-1051.[6] Ervin V J, Roop J P. Variational formaulation for the stationary fractional advection dispersion equation[J]. Numer. Methods Partial Differential Equations, 2006, 22(3):558-576.[7] Deng W H. Finite element method for the space and time fractional Fokker-Planck equation[J]. SIAM J. Numer. Anal., 2008, 47:204-226.[8] Zhang H, Liu F, Anh V. Galerkin finite element approximation of symmetric space-fractional partial differential equations[J]. Appl. Math. Comput., 2010, 217:2534-2545.[9] Li C P, Zhao Z G, Chen Y Q. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion[J]. Comput. Math. Appl., 2011, 62:855-875.[10] Ford N J, Xiao J Y, Yan Y B. A finite element method for time fractional partial differential equations[J]. Fract. Calc. Appl. Anal., 2011, 14:454-574.[11] Bu W P, Liu X T, Tang Y F, Yang J Y. Finite element multigrid method for multi-term time fractional advection diffusion equations[J]. Int. J. Model. Simul. Sci. Comput., 2015, 6 DOI:10.1142/S1793962315400012.[12] Mustapha K, McLean W. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation[J]. Numer. Algor., 2011, 56:159-184.[13] Zheng Y Y, Li C P, Zhao Z G. A fully discrete discontinuous Galerkin method for nonlinear fractional Fokker-Planck equation[J]. Math. Probl. Eng., 2010, Article ID 279038, 26 pages.[14] 刘金存, 李宏. A space-time finite element method for the semilinear fractional diffusion equation:the discontinuous Galerkin method[J]. 应用数学, 2013, 26(4):853-862.[15] Ahmad B, Alhothuali M S, Alsulami H H, Kirane M, Timoshin S. On nonlinear nonlocal systems of reaction diffusion equations[J]. Abstr. Appl. Anal., 2014, Article ID 804784, 6 pages.[16] Karakashian C, Makridakis C. A space-time finite element method for the nonlinear Schrödinger the discontinuous Galerkin method[J]. Math. Comp., 1998, 97(222):479-499.[17] Yang Q, Liu F, Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 2010, 34:200-218.[18] Davis P J, Rabinowitz P. Methods of Numerical Integration[M]. New York:Academic Press, 1975.[19] Brenner B C, Scott L R. The Mathematical Theory of Finite Element Methods[M]. New York:Springer-verlag, 1994. |
[1] | 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33. |
[2] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[3] | 陈明卿, 谢小平. 随机平面线弹性问题的一类弱Galerkin方法[J]. 计算数学, 2021, 43(3): 279-300. |
[4] | 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321. |
[5] | 董自明, 李宏, 赵智慧, 唐斯琴. 对流扩散反应方程的局部投影稳定化连续时空有限元方法[J]. 计算数学, 2021, 43(3): 367-387. |
[6] | 曾玉平, 翁智峰, 胡汉章. 简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计[J]. 计算数学, 2021, 43(2): 162-176. |
[7] | 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226. |
[8] | 房明娟, 阳莺, 唐鸣. 稳态Poisson-Nernst-Planck方程的残量型后验误差估计[J]. 计算数学, 2021, 43(1): 17-32. |
[9] | 王然, 张怀, 康彤. 求解带有非线性边界条件的涡流方程的A-φ解耦有限元格式[J]. 计算数学, 2021, 43(1): 33-55. |
[10] | 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109. |
[11] | 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486. |
[12] | 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418. |
[13] | 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309. |
[14] | 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206. |
[15] | 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||