王艳芳1,2, 王然3, 康彤3
王艳芳, 王然, 康彤. 一类带有铁磁材料参数的非线性涡流问题的A-φ有限元法[J]. 计算数学, 2016, 38(2): 125-142.
Wang Yanfang, Wang Ran, Kang Tong. A-φ FINITE ELEMENT METHOD FOR A NONLINEAR EDDY CURRENT PROBLEM WITH FERROMAGNETIC MATERIALS[J]. Mathematica Numerica Sinica, 2016, 38(2): 125-142.
Wang Yanfang1,2, Wang Ran3, Kang Tong3
MR(2010)主题分类:
分享此文:
[1] Ciarlet P, Jr, Wu H, Zou J.Edge element methods for Maxwell's equations with strong convergence for Gauss' laws[J]. SIAM J. Numer. Anal., 2014, 52:779-807.[2] Ciarlet P, Zou J.Fully discrete finite element approaches for time-dependent Maxwell's equa-tions[J]. Numerische Mathematik, 1999, 82:193-219.[3] Duan H Y, Li S, Roger C E Tan, Zheng W Y. A delta-regularization finite element method for a double curl problem with divergence-free constraint[J]. SIAM J. Numer. Anal., 2012, 50:3208-3230.[4] Duan H Y, Lin P, Roger C E Tan. Analysis of a continuous finite element method for H(curl,div)-elliptic interface problem[J]. Numerische Mathematik, 2013, 123:671-707.[5] Durand S, Slodi?ka M.Fully discrete finite element method for Maxwell's equations with nonlinear conductivity[J]. IMA J. Numer. Anal., 2011, 31:1713-1733.[6] Slodi?ka M, Durand S.Fully discrete finite element scheme for Maxwell's equations with non-linear boundary condition[J]. J. Math. Anal. Appl., 2011, 375:230-244.[7] Monk P.Finite Element Methods for Maxwell's quations[M]. Oxford University Press, USA, 2003.[8] Jiang X, Zheng W Y.An efficient eddy curent model for nonlinear Maxwell equations with laminated conductors[J]. SIAM J. Appl. Math., 2012, 72:1021-1040.[9] Li P J, Zheng W Y.An H-ψ formulation for the three-dimensional eddy current problem in laminated structures[J]. J. Differ. Equations, 2013, 254:3476-3500.[10] Bermúdez A, Gómez D, Salgado P, Rodríguez R, Venegas P.Numerical solution of a transient non-linear axisymmetric eddy current model with non-local boundary conditions[J]. Math. Mod. Meth. Appls., 2013, 23:2495-2521.[11] Acevedo R, Meddahi S, Rodríguez R.An E-based mixed formulation for a time-dependent eddy current problem[J]. Math. Comput., 2009, 78:1929-1949.[12] Albanese R, Rubinacci G.Formulation of the eddy-current problem[J]. IEEE Proc., 1990, 137:16-22.[13] Amrouche C, Bernardi C, Dauge M, Girault V.Vector potentials in three-dimensional non-smooth domains[J]. Math Meth. Appl. Sci., 1998, 21:823-864.[14] Bíró O, Preis K.On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents[J]. IEEE Tran. Magn., 1989, 25:3145-3159.[15] Kang T, Chen T, Zhang H, Kim K I.Fully discrete A-φ finite element method for Maxwell's equations with nonlinear conductivity[J]. Numer. Meth. Part. D. E., 2014, 30:2083-2108.[16] Kang T, Kim K I.Fully discrete potential-based finite element methods for a transient eddy current problem[J]. Computing, 2009, 85:339-362.[17] Kim K I, Kang T.A potential-based finite element method of time-dependent Maxwell's equations[J]. Int. J. Computer Math., 2006, 83:107-122.[18] Rodíguez A, Valli A.Eddy Current Approximation of Maxwell Equations[M]. Springer-Verlag, Italia, 2010.[19] Zienkiewicz O C.Finite element-the basic concepts and the application to 3D magnetostatic problems[M]. John Wiley and Sons INC., London, 1980.[20] Zeidler E.Nonlinear functional analysis and its applications II/B:Nonlinear monotone operators[M]. Springer-Verlag, New York, 1990.[21] Ciarlet P. The finite element method for elliptic problems[M]. North-Holland, Amsterdam, 1978.[22] Vainberg M.Variational method and method of monotone operators in the theory of nonlinear equations[M]. John Wiley, New York, 1973. |
[1] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[2] | 陈明卿, 谢小平. 随机平面线弹性问题的一类弱Galerkin方法[J]. 计算数学, 2021, 43(3): 279-300. |
[3] | 董自明, 李宏, 赵智慧, 唐斯琴. 对流扩散反应方程的局部投影稳定化连续时空有限元方法[J]. 计算数学, 2021, 43(3): 367-387. |
[4] | 曾玉平, 翁智峰, 胡汉章. 简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计[J]. 计算数学, 2021, 43(2): 162-176. |
[5] | 房明娟, 阳莺, 唐鸣. 稳态Poisson-Nernst-Planck方程的残量型后验误差估计[J]. 计算数学, 2021, 43(1): 17-32. |
[6] | 王然, 张怀, 康彤. 求解带有非线性边界条件的涡流方程的A-φ解耦有限元格式[J]. 计算数学, 2021, 43(1): 33-55. |
[7] | 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486. |
[8] | 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206. |
[9] | 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116. |
[10] | 贾仲孝, 孙晓琳. 计算矩阵函数双线性形式的Krylov子空间算法的误差分析[J]. 计算数学, 2020, 42(1): 117-130. |
[11] | 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213. |
[12] | 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116. |
[13] | 程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308. |
[14] | 单炜琨, 李会元. 双调和算子特征值问题的混合三角谱元方法[J]. 计算数学, 2017, 39(1): 81-97. |
[15] | 曹济伟. 求解二维时谐Maxwell方程的一种混合有限元新格式[J]. 计算数学, 2016, 38(4): 429-441. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||