• 论文 • 上一篇
杨容1, 袁光伟2, 朱少红3
杨容, 袁光伟, 朱少红. 粒子输运方程的子网格平衡格式的稳定性和收敛性[J]. 计算数学, 2015, 37(4): 439-448.
Yang Rong, Yuan Guangwei, Zhu Shaohong. Stability and convergence of subcell balance scheme for particle transport equations[J]. Mathematica Numerica Sinica, 2015, 37(4): 439-448.
Yang Rong1, Yuan Guangwei2, Zhu Shaohong3
MR(2010)主题分类:
分享此文:
[1] Duderstadt J J, Martin W R. Transport theory, Wiley-Interscience, New York (1979).[2] Pomraning G C. The Equations of Radiation Hydrodynamics, Pergamon Press, New York (1973).[3] Lewis E E, Miller W R. Computational Methods of Neutron Transport, John Wiley&Sons, New York (1984).[4] Marchuk G I, Lebedev V I. Numerical Methods in the Theory of NeutronTransport, Harwood, London (1986).[5] 杜书华等编著. 输运问题的计算机模拟[M]. 湖南科技出版社, (1989).[6] Carlson B G. Solution of the Transport Equation by Sn Approximations, Los Alamos Scientific Laboratory Report LA-1599, 1953.[7] Morel J E,Wareing T A, et al. A Linear-Discontinuous Spatial Differencing Scheme for Sn Radiative Transfer Calculations[J]. Journal of Computational Physics, 1996, 128:445.[8] Ackroyd Ron T. Finite Element Methods for Particle Transport applications to reactor and radia-tion physics, Research Studies Press Ltd (1997).[9] Reed W H, Hill T R. Triangular Mesh Methods for the Neutron Transport Equation, Technical report LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, NM (1973).[10] 张铁. 间断有限元理论与方法[M]. 科学出版社, (2012).[11] Yuan Guangwei, Shen Zhijun, Yan Wei. Upwind Discontinuous Galerkin Methods for Two Dimen-sional Neutron Transport Equations[J]. J.P.D.E., 2003, 16(4):376-380.[12] Han Weimin, Huang Jianguo, Eichholz Joseph A. Discrete-ordinate Discontinuous Galerkin Meth-ods for Solving the Radiative Transfer Equation[J]. SIAM J. Sci. Comput., 2010, 32(2):477-497.[13] Coelho P J. Bounded Skew High-Order Resolution Schemes for the Discrete Ordinates Method[J]. J Comput Phys, 2002, 175:412.[14] Larsen E W, Morel J E. Advances in Discrete-Ordinates Methodology, Nuclear Computational Science:A Century in Review, Edited by Y. Azmy and E. Sartori, Springer, New York (2006).[15] Adams M L. Subcell Balance Methods for Radiative Transfer on Arbitrary Grids[J]. Transport Theory and Statis. Phys., 1997, 26:385.[16] Adams M L. Discontinuous Finite Element Transport Solutions in Thick Diffusive Problems[J]. Nuclear Science and Engineering, 2001, 137:298-333.[17] Yang Rong, Hang Xudeng, Li Jinghong, Study of Two-Dimensional Cylindric Symmetric Radiative Transfer Benchmark model and Code Tests[J]. Chinese J. Comput. Phys., 2010, 27(4):533-540. |
[1] | 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33. |
[2] | 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118. |
[3] | 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443. |
[4] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[5] | 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321. |
[6] | 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366. |
[7] | 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412. |
[8] | 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226. |
[9] | 袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16. |
[10] | 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109. |
[11] | 李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117. |
[12] | 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471. |
[13] | 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456. |
[14] | 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418. |
[15] | 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||