• 论文 • 上一篇    

粒子输运方程的子网格平衡格式的稳定性和收敛性

杨容1, 袁光伟2, 朱少红3   

  1. 1. 北京应用物理与计算数学研究所, 北京 100094;
    2. 北京应用物理与计算数学研究所计算物理实验室, 北京 100094;
    3. 南开大学数学科学学院, 天津 300071
  • 收稿日期:2015-01-03 出版日期:2015-11-15 发布日期:2015-11-19
  • 通讯作者: 袁光伟,E-mail: yuan_guangwei@iapcm.ac.cn.
  • 基金资助:

    863课题(2012AA01A303);国家自然科学基金(11571048);中国工程物理研究院科学技术发展基金(2014A0202009,2015B0202033,2015B0202034)资助项目.

杨容, 袁光伟, 朱少红. 粒子输运方程的子网格平衡格式的稳定性和收敛性[J]. 计算数学, 2015, 37(4): 439-448.

Yang Rong, Yuan Guangwei, Zhu Shaohong. Stability and convergence of subcell balance scheme for particle transport equations[J]. Mathematica Numerica Sinica, 2015, 37(4): 439-448.

Stability and convergence of subcell balance scheme for particle transport equations

Yang Rong1, Yuan Guangwei2, Zhu Shaohong3   

  1. 1. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
    2. Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
    3. School of Mathematical Science, Nan Kai University, Tianjin 300071, China
  • Received:2015-01-03 Online:2015-11-15 Published:2015-11-19
本文研究四边形网格上求解粒子输运方程的有限体积格式, 其中角方向变量采用离散纵标(Sn)方法, 空间离散采用子网格平衡(SCB)格式. 利用能量估计方法, 证明了在正交网格上该格式的稳定性和离散解的收敛性.数值实验结果验证了格式的稳定性和离散解的收敛性.
In this paper a finite volume method for solving particle transport equations is studied, in which the discrete ordinate technique is applied to angular variable and the subcell balance (SCB) scheme is applied to spatial variable. The stability and convergence of the numerical solution are proved by using energy estimation method. Numerical examples are included to demonstrate the performance of the method.

MR(2010)主题分类: 

()
[1] Duderstadt J J, Martin W R. Transport theory, Wiley-Interscience, New York (1979).

[2] Pomraning G C. The Equations of Radiation Hydrodynamics, Pergamon Press, New York (1973).

[3] Lewis E E, Miller W R. Computational Methods of Neutron Transport, John Wiley&Sons, New York (1984).

[4] Marchuk G I, Lebedev V I. Numerical Methods in the Theory of NeutronTransport, Harwood, London (1986).

[5] 杜书华等编著. 输运问题的计算机模拟[M]. 湖南科技出版社, (1989).

[6] Carlson B G. Solution of the Transport Equation by Sn Approximations, Los Alamos Scientific Laboratory Report LA-1599, 1953.

[7] Morel J E,Wareing T A, et al. A Linear-Discontinuous Spatial Differencing Scheme for Sn Radiative Transfer Calculations[J]. Journal of Computational Physics, 1996, 128:445.

[8] Ackroyd Ron T. Finite Element Methods for Particle Transport applications to reactor and radia-tion physics, Research Studies Press Ltd (1997).

[9] Reed W H, Hill T R. Triangular Mesh Methods for the Neutron Transport Equation, Technical report LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, NM (1973).

[10] 张铁. 间断有限元理论与方法[M]. 科学出版社, (2012).

[11] Yuan Guangwei, Shen Zhijun, Yan Wei. Upwind Discontinuous Galerkin Methods for Two Dimen-sional Neutron Transport Equations[J]. J.P.D.E., 2003, 16(4):376-380.

[12] Han Weimin, Huang Jianguo, Eichholz Joseph A. Discrete-ordinate Discontinuous Galerkin Meth-ods for Solving the Radiative Transfer Equation[J]. SIAM J. Sci. Comput., 2010, 32(2):477-497.

[13] Coelho P J. Bounded Skew High-Order Resolution Schemes for the Discrete Ordinates Method[J]. J Comput Phys, 2002, 175:412.

[14] Larsen E W, Morel J E. Advances in Discrete-Ordinates Methodology, Nuclear Computational Science:A Century in Review, Edited by Y. Azmy and E. Sartori, Springer, New York (2006).

[15] Adams M L. Subcell Balance Methods for Radiative Transfer on Arbitrary Grids[J]. Transport Theory and Statis. Phys., 1997, 26:385.

[16] Adams M L. Discontinuous Finite Element Transport Solutions in Thick Diffusive Problems[J]. Nuclear Science and Engineering, 2001, 137:298-333.

[17] Yang Rong, Hang Xudeng, Li Jinghong, Study of Two-Dimensional Cylindric Symmetric Radiative Transfer Benchmark model and Code Tests[J]. Chinese J. Comput. Phys., 2010, 27(4):533-540.
[1] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[2] 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118.
[3] 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443.
[4] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
[5] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[6] 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366.
[7] 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412.
[8] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226.
[9] 袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16.
[10] 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109.
[11] 李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117.
[12] 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471.
[13] 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.
[14] 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418.
[15] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
阅读次数
全文


摘要