• 论文 • 上一篇    下一篇

关于热传导方程半离散差分格式的一个注记

李厚彪, 钟尔杰   

  1. 电子科技大学数学科学学院, 成都 611731
  • 收稿日期:2014-10-21 出版日期:2015-11-15 发布日期:2015-11-19
  • 基金资助:

    国家自然科学基金(11101071,61472462)和国家公派留学基金([2012]3022)资助项目.

李厚彪, 钟尔杰. 关于热传导方程半离散差分格式的一个注记[J]. 计算数学, 2015, 37(4): 401-414.

Li Houbiao, Zhong Erjie. A note on semi-discrete difference schemes of heat conduction equations[J]. Mathematica Numerica Sinica, 2015, 37(4): 401-414.

A note on semi-discrete difference schemes of heat conduction equations

Li Houbiao, Zhong Erjie   

  1. School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
  • Received:2014-10-21 Online:2015-11-15 Published:2015-11-19
本文研究了热传导方程初边值问题的半离散化差分格式直接解算法. 分别从Dirichlet和Neumann边界条件出发, 直接由空间差分格式导出与时间相关的一阶常微分方程组, 随后通过正/余弦变换获得了原方程的半解析解, 并给出了相关收敛性分析.并对中心差分格式和紧差分格式的精度差异, 通过矩阵特征值理论给出了相关原因分析. 另外, 对于二维热传导方程初边值问题, 应用矩阵张量积运算, 该直接解算法可直接演变成二重正(余)弦变换. 该方法由于不涉及时间上的离散, 从而具有较好的计算效率.
In this paper, based on semi-discrete difference scheme, a new direct algorithm on heat conduction equations is presented. For the Dirichlet and Neumann boundary conditions, the ordinary differential equations are derived from spatial difference scheme, and then the semi-analytical solution of original equation is obtained by the sine or cosine transforms. The corresponding convergence is also analyzed. The precision analysis on central difference and compact difference schemes is also presented by the corresponding eigenvalue theory. In addition, this direct algorithm may be directly developed into double sine or cosine transforms for two-dimensional heat conduction equations by the matrix tensor product. Since there does not exist the time discrete such that it has very high computational efficiency.

MR(2010)主题分类: 

()
[1] 姜尚礼, 孔德兴, 陈志浩编著. 应用偏微分方程讲义[M]. 北京:高等教育出版社, 2008, 88-97.

[2] 黄游明. 发展方程数值方法[M]. 北京:科学出版社, 2004, 25-44, 92-106.

[3] 李明奇, 田太心. 数学物理方程[M]. 成都:电子科技大学出版社, 2007, 20-78.

[4] Gilbert Strang, Shev MacNamara. Functions of difference matrices are Toeplitz plus Hankel[J]. SIAM Review, 2014, 56(3):525-546.

[5] van der Houwen P J, Sommeijer B P. Approximate factorization for time-dependent partial dif-ferential equations[J]. Journal of Computational and Applied Mathematics, 2001, 128:447-466.

[6] Beam M, Warming R F. An implicit finite-difference algorithm for hyperbolic systems in conservation-law form[J]. J. Comput. Phys., 1976, 22:87-110.

[7] Eichler-Liebenow C, van der Houwen P J, Sommeijer B P. Analysis of approximate factorization in iteration methods[J]. Appl. Numer. Math., 1998, 28:245-258.

[8] Yueh Wen-Chyuan. Eigenvalues of several tridiagonal matrices[J]. Applied Mathematics E-Notes, 2005, 5:66-74.
[1] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[2] 唐玲艳, 郭云瑞, 宋松和. 非结构网格上一类满足局部极值原理的三阶精度有限体积方法[J]. 计算数学, 2017, 39(3): 309-320.
[3] 李军成, 刘成志. 带两个形状参数的同次Bézier曲线[J]. 计算数学, 2017, 39(2): 115-128.
[4] 王涛, 刘铁钢. 求解对流扩散方程的一致四阶紧致格式[J]. 计算数学, 2016, 38(4): 391-404.
[5] 刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1): 96-112.
[6] 王帅, 杭旭登, 袁光伟. 三维多面体网格上扩散方程的保正格式[J]. 计算数学, 2015, 37(3): 247-263.
[7] 赵鑫, 孙建强, 何雪珺. Cahn-Hilliard方程的高阶保能量散逸性方法[J]. 计算数学, 2015, 37(2): 137-147.
[8] 毕亚倩, 刘新为. 求解界约束优化的一种新的非单调谱投影梯度法[J]. 计算数学, 2013, 35(4): 419-430.
[9] 张磊, 曹礼群. 复合材料特征值的高阶多尺度Rayleigh商校正[J]. 计算数学, 2013, 35(4): 431-448.
[10] 李昊辰, 孙建强, 骆思宇. 非线性薛定谔方程的平均向量场方法[J]. 计算数学, 2013, 35(1): 59-66.
[11] 王开荣, 刘奔. 建立在修正BFGS公式基础上的新的共轭梯度法[J]. 计算数学, 2012, 34(1): 81-92.
[12] 孔艳花, 戴华. 求解陀螺系统特征值问题的收缩二阶Lanczos方法[J]. 计算数学, 2011, 33(3): 328-336.
[13] 孙建强, 戴桂冬. 光伏光折变晶体中孤立波的数值模拟[J]. 计算数学, 2009, 31(4): 419-424.
[14] 庞宏奎, 黎稳. 求解对称鞍点问题的修正Uzawa方法[J]. 计算数学, 2009, 31(3): 231-242.
[15] 吕学琴, 崔明根. 求解一类二阶非线性偏微分方程的新算法[J]. 计算数学, 2009, 31(2): 111-117.
阅读次数
全文


摘要