• 论文 • 上一篇    下一篇

关于Katz指标的二级分裂迭代方法

潘春平   

  1. 浙江工业职业技术学院人文社科部, 浙江绍兴 312000
  • 收稿日期:2014-10-13 出版日期:2015-11-15 发布日期:2015-11-19
  • 基金资助:

    浙江省教育厅科研项目资助(Y201432547);全国教育信息技术研究课题(126240641);浙江省社会科学界联合会研究课题成果(2013B157).

潘春平. 关于Katz指标的二级分裂迭代方法[J]. 计算数学, 2015, 37(4): 390-400.

Pan Chunping. On two-stage iterative method for computing katz status score[J]. Mathematica Numerica Sinica, 2015, 37(4): 390-400.

On two-stage iterative method for computing katz status score

Pan Chunping   

  1. Dept. of Humanities and Social Sciences, Zhejiang Industry Polytechnic College, Shaoxing 312000, Zhejiang, China
  • Received:2014-10-13 Online:2015-11-15 Published:2015-11-19
本文研究复杂网络中计算Katz指标的迭代法, 基于网络拓扑结构, 在快速Katz指标算法的基础上, 运用二级分裂迭代思想, 提出了具有两个参数的二级分裂迭代法, 并研究了该方法的收敛性. 基于该方法的收缩因子的计算公式, 讨论了迭代参数可能的选择, 通过参数的选择能有效提高二级迭代法的收敛效率. 最后通过数值实例验证了此方法的有效性.
In this paper, we study the iterative method to approximate the katz status score in the complex networks. Based on the network topology structure and faster katz status score algorithm, we present a two-stage iterative method with two parameters which cover faster katz status score method. Under some suitable conditions, the convergence results are given. Based on the formula of the contraction factor of the method, we discuss possible choices of the iteration parameters, which could be practically useful for accelerating the convergence rate of the two-stage iterative method. Also numerical results shows that the new method is effective.

MR(2010)主题分类: 

()
[1] Katz L. A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18(1):39-43.

[2] Watts D J, Strogatz S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393:440-442.

[3] Albert R, Barabási A L. Emergence of scaling in random networks[J]. Science, 1999, 286:509-512.

[4] Albert R, Jeong H. The Internet's Achilles' Hell:Error and attack tolerance of complex network-s[J]. Nature, 2000, 406:387-482.

[5] Broder A, Kumar R, Maghoul F, Raghavan P. Graph structure in the web[J]. Computer networks, 2000, 33:309-320.

[6] Foster K C, Muth S Q, Potterat J J, Rothenberg R B. A Faster katz status score algorithm[J]. Computational&Mathematical Organization Theory, 2001, 7:275-285.

[7] Strogatz S H. Exploring complex networks[J]. Nature, 2001, 410:268-476.

[8] Langville A N and Meyer C D. A survey of eigenvector methods for Web information retrieval[J]. SIAM Rev., 2005, 47(1):135-161.

[9] Newman M. The structure and function of complex networks[J]. SIAM Review., 2003, 45:167-256.

[10] Bai Z Z. On convergence of the inner-outer iteration method for computing PageRank[J]. Numer-ical Algebra, Control and Optimization, 2012, 2(4):855-862.

[11] Ortega J M. Introduction to Parallel and vector solution of linear systems[M]. New York and London:Plenum Press, 1988.

[12] Kohno T, Kotakemori H, Niki H, Usui M. Improving the modified Gauss-seideI method for z-matrices[J], Linear Algebra Appl, 1997, 267:113-123

[13] Frommer A, Szyld D B. H-splitting and two-stage iterative methods[J], Numerische Mathematik, 1992, 63:345-356

[14] 胡家赣. 线性方程组的迭代解法[M]. 北京:科学出版社, 1999.

[15] 曹志浩. 线性方程组二级迭代法的收敛性[J]. 计算数学,1995, 1:98-109.
[1] 吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236.
[2] 曹阳, 陈莹婷. 正则化HSS预处理鞍点矩阵的特征值估计[J]. 计算数学, 2020, 42(1): 51-62.
[3] 王丽, 罗玉花, 王广彬. 求解加权线性最小二乘问题的一类预处理GAOR方法[J]. 计算数学, 2020, 42(1): 63-79.
[4] 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50.
[5] 戴平凡, 李继成, 白建超. 解线性互补问题的预处理加速模Gauss-Seidel迭代方法[J]. 计算数学, 2019, 41(3): 308-319.
[6] 闫熙, 马昌凤. 求解矩阵方程AXB+CXD=F参数迭代法的最优参数分析[J]. 计算数学, 2019, 41(1): 37-51.
[7] 潘春平, 王红玉, 曹文方. 非Hermitian正定线性方程组的外推的HSS迭代方法[J]. 计算数学, 2019, 41(1): 52-65.
[8] 李郴良, 田兆鹤, 胡小媚. 一类弱非线性互补问题的广义模系矩阵多分裂多参数加速松弛迭代方法[J]. 计算数学, 2019, 41(1): 91-103.
[9] 刘忠祥, 王翠薇, 王增琦. 求解时谐涡流模型鞍点问题的分块交替分裂隐式迭代算法的改进[J]. 计算数学, 2018, 40(3): 271-286.
[10] 骆其伦, 黎稳. 二维Helmholtz方程的联合紧致差分离散方程组的预处理方法[J]. 计算数学, 2017, 39(4): 407-420.
[11] 施章磊, 李维国. 矩阵广义逆硬阈值追踪算法与稀疏恢复问题[J]. 计算数学, 2017, 39(2): 189-199.
[12] 周海林. 线性子空间上求解矩阵方程组A1XB1=C1,A2XB2=C2的迭代算法[J]. 计算数学, 2017, 39(2): 213-228.
[13] 柯艺芬, 马昌凤. 椭圆PDE-约束优化问题的一个预条件子[J]. 计算数学, 2017, 39(1): 70-80.
[14] 温朝涛, 陈小山. 矩阵极分解新的数值方法[J]. 计算数学, 2017, 39(1): 23-32.
[15] 刘丽华, 马昌凤, 唐嘉. 求解广义鞍点问题的一个新的类SOR算法[J]. 计算数学, 2016, 38(1): 83-95.
阅读次数
全文


摘要