• 论文 • 上一篇    下一篇

互补约束问题的一种新松弛规划及其收敛性

刘兵   

  1. 承德石油高等专科学校社科与数理部, 河北承德 067000; 河北省仪器仪表工程技术研究中心, 河北承德 067000
  • 收稿日期:2014-09-19 出版日期:2015-11-15 发布日期:2015-11-19
  • 基金资助:

    承德市科学技术研究与发展计划项目(201422115);承德市软科学项目(201422123).

刘兵. 互补约束问题的一种新松弛规划及其收敛性[J]. 计算数学, 2015, 37(4): 374-389.

Liu Bing. A new relaxation scheme for mathematical programs with general complementarity constraints and its convergence properties[J]. Mathematica Numerica Sinica, 2015, 37(4): 374-389.

A new relaxation scheme for mathematical programs with general complementarity constraints and its convergence properties

Liu Bing   

  1. Department of Social Scince and Mathematics, ChengDe Petroleum College, Chengde 067000, Hebei, China; Hebei Instruments and Meters Engineering Technology Research Center, Chengde 067000, Hebei, China
  • Received:2014-09-19 Online:2015-11-15 Published:2015-11-19
在G.H. Lin 与 M. Fukushima思想的启发下, 针对一般形式的互补约束问题, 本文构造了一种新的松弛规划. 通过修正和简化G.H. Lin与M. Fukushima的证明方法, 在比其更弱的假设条件下获得了该松弛规划的收敛性质.
For general mathematical programs with complementarity constraints, A new relaxation scheme was established in the paper using the idea of G.H. Lin and M. Fukushima, and the convergence results were obtained under some weaker conditions.

MR(2010)主题分类: 

()
[1] Chen Y, Florian M. The nonlinear bilevel programming problems:formulations, regularity and optimality conditions[J]. SIAM J. Optimization, 1995, 32:193-204.

[2] Ye J J, Zhu D L. Optimality for bilevel programming problems[J]. SIAM J. Optimization, 1995, 33:9-27.

[3] Luo Z Q, Pang J S and Ralph D. Mathematical programs with equilibrium constraints. Cambridge:Cambridge University Press, 1996.

[4] 李飞, 徐成贤. 求解带均衡约束数学规划问题的一个连续化方法[J]. 计算数学, 2004, 26(1):3-12.

[5] 刘兵, 乌力吉,王辉. 一般互补约束问题的一种松弛逐步二次规划算法[J].高等学校计算数学学报, 2013, 35:97-113.

[6] Jiang H Y, Ralph D. Smooth SQP methods for mathematical programs with nonlinear Comple-mentarity Constraints[J]. SIAM J. optimization, 2000, 10:779-808,

[7] Qutrata J V, Kon?var M and Zowe J. Nonsmooth approach to optimization problems with equi-librium constraints. Kluwer Academic publishers, 1998.

[8] Fukushima M, Pang J S. Convergence of a smoothing continuation method for mathematical programs with complementarity constraints, in:Illposed Variational Programs and Regulariation Techniques, Lecture Notes in Economics and Mathematical Systems, M. Thèra and R.Tichatschke eds., Vol.477.Berlin/Heidelberg:Springer, 105-116.

[9] Scheel H, Scholtes S. Convergence properties of a regularization scheme for mathematical programs with complementarity constraints[J]. SIAM J. Optimization, 2001, 11(4):918-936.

[10] Lin G H, Fukushima M. A modified relaxation scheme for mathematical programs with comple-mentarity constraints[J]. Annals of Operations Research, 2005, 133(4):63-84.

[11] Pang J S, Fukushima M. Complementarity constraints qualifications and simplified B-stationary conditions for mathematical programs with equilibrium constraints[J]. Computational Optimiza-tion and Application, 13, 111-136.

[12] Scheel H, Scholtes S. Mathematical Programs with Complementarity Constraints:stationarity optimality and sensitivity[J]. Mathematics of Operations Research, 2000, 25(1).

[13] Flegel M L, Kanzow C. Abadie-type constraint qualification for mathematical programs with equilibrium constraints[J]. J. Optimization and Application, 124(3), 595-614.
No related articles found!
阅读次数
全文


摘要