刘兵
刘兵. 互补约束问题的一种新松弛规划及其收敛性[J]. 计算数学, 2015, 37(4): 374-389.
Liu Bing. A new relaxation scheme for mathematical programs with general complementarity constraints and its convergence properties[J]. Mathematica Numerica Sinica, 2015, 37(4): 374-389.
Liu Bing
MR(2010)主题分类:
分享此文:
[1] Chen Y, Florian M. The nonlinear bilevel programming problems:formulations, regularity and optimality conditions[J]. SIAM J. Optimization, 1995, 32:193-204.[2] Ye J J, Zhu D L. Optimality for bilevel programming problems[J]. SIAM J. Optimization, 1995, 33:9-27.[3] Luo Z Q, Pang J S and Ralph D. Mathematical programs with equilibrium constraints. Cambridge:Cambridge University Press, 1996.[4] 李飞, 徐成贤. 求解带均衡约束数学规划问题的一个连续化方法[J]. 计算数学, 2004, 26(1):3-12.[5] 刘兵, 乌力吉,王辉. 一般互补约束问题的一种松弛逐步二次规划算法[J].高等学校计算数学学报, 2013, 35:97-113.[6] Jiang H Y, Ralph D. Smooth SQP methods for mathematical programs with nonlinear Comple-mentarity Constraints[J]. SIAM J. optimization, 2000, 10:779-808,[7] Qutrata J V, Kon?var M and Zowe J. Nonsmooth approach to optimization problems with equi-librium constraints. Kluwer Academic publishers, 1998.[8] Fukushima M, Pang J S. Convergence of a smoothing continuation method for mathematical programs with complementarity constraints, in:Illposed Variational Programs and Regulariation Techniques, Lecture Notes in Economics and Mathematical Systems, M. Thèra and R.Tichatschke eds., Vol.477.Berlin/Heidelberg:Springer, 105-116.[9] Scheel H, Scholtes S. Convergence properties of a regularization scheme for mathematical programs with complementarity constraints[J]. SIAM J. Optimization, 2001, 11(4):918-936.[10] Lin G H, Fukushima M. A modified relaxation scheme for mathematical programs with comple-mentarity constraints[J]. Annals of Operations Research, 2005, 133(4):63-84.[11] Pang J S, Fukushima M. Complementarity constraints qualifications and simplified B-stationary conditions for mathematical programs with equilibrium constraints[J]. Computational Optimiza-tion and Application, 13, 111-136.[12] Scheel H, Scholtes S. Mathematical Programs with Complementarity Constraints:stationarity optimality and sensitivity[J]. Mathematics of Operations Research, 2000, 25(1).[13] Flegel M L, Kanzow C. Abadie-type constraint qualification for mathematical programs with equilibrium constraints[J]. J. Optimization and Application, 124(3), 595-614. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||