• 论文 • 上一篇    下一篇

二次有限体积法定价美式期权

甘小艇1,2, 殷俊锋1   

  1. 1. 同济大学数学系, 上海 200092;
    2. 楚雄师范学院数学与统计学院, 云南楚雄 675000
  • 收稿日期:2014-03-04 出版日期:2015-02-15 发布日期:2015-03-10
  • 基金资助:

    国家自然科学基金(11271289),云南省应用基础研究计划青年项目(2013FD045).

甘小艇, 殷俊锋. 二次有限体积法定价美式期权[J]. 计算数学, 2015, 37(1): 67-82.

Gan Xiaoting, Yin Junfeng. QUADRATIC FINITE VOLUME METHOD FOR PRICING AMERICAN OPTION[J]. Mathematica Numerica Sinica, 2015, 37(1): 67-82.

QUADRATIC FINITE VOLUME METHOD FOR PRICING AMERICAN OPTION

Gan Xiaoting1,2, Yin Junfeng1   

  1. 1. Department of Mathematics, Tongji University, Shanghai 200092, China;
    2. College of Mathematics and Statistics, Chuxiong Normal University, Chuxiong 675000, Yunnan, China
  • Received:2014-03-04 Online:2015-02-15 Published:2015-03-10
本文考虑二次有限体积法定价美式期权.构造了隐式欧拉和Crank-Nicolson两种全离散二次有限体积格式,并得到相应的线性互补问题.采用基于超松弛迭代的模方法求解线性互补问题,并与投影超松弛迭代法作数值比较.数值实验结果表明Crank-Nicolson二次有限体积格式的求解效率高于隐式欧拉格式,模方法的求解速度较快,二次有限体积法的求解精度较高.
Quadratic finite volume method for pricing American options is studied. The implicit-Euler and Crank-Nicolson quadratic finite volume schemes are proposed, and the modulus-based successive overrelaxation methods are applied to solve the linear complementarity problems. Numerical experiments show that quadratic finite volume method based on Crank-Nicolson scheme is much efficient, and the modulus-based successive overrelaxation method is faster than the projected successive overrelaxation method.

MR(2010)主题分类: 

()
[1] 姜礼尚. 期权定价的数学模型和方法[M]. 高等教育出版社, 2008.

[2] Achdou Y, Pironneau O. Computational methods for option pricing[M]. Philadelphia: SIAM, 2005.

[3] Zheng N, Yin J F. Modulus-based successive overrelaxation method for pricing Ameican options[J]. Journal of Applied Mathematics and Informatics, 2013, 31: 769-784.

[4] Rubinstein M. On the relation between binomial and trinomial option pricing models[J]. Journal of Derivatives, 2000, 8: 47-50.

[5] Zheng N, Yin J F. On the convergence of projected triangular decomposition methods for pricing American options with stochastic[J]. Journal of Applied Mathematics and Computation, 2013, 223: 411-422.

[6] 张铁. 求解股票期权定价问题的差分方法[J]. 东北大学学报(自然科学版), 2004, 25: 190-193.

[7] 张铁. 美式期权定价问题的数值方法[J]. 应用数学学报, 2002, 1: 113-122.

[8] Chacur A A, Ali M M, Salazar J G. Options pricing by the finite element method[J]. Journal of Computers and Mathematics with Applications, 2011, 61: 2863-2873.

[9] 郑宁, 殷俊锋, 徐承龙. 投影三角分解法定价带随机波动率的美式期权[J]. 应用数学与计算数学学报, 2013, 27: 114-127.

[10] 郑宁, 殷俊锋. 基于不光滑边界的变系数抛物型方程的高精度紧格式[J]. 计算数学, 2013, 35: 275-285.

[11] Glasserman P. Monte Carlo methods in financial engineerin[M]. New York: Springer-Verlag, 2004.

[12] 李荣华. 两点边值问题的广义差分法[J]. 吉林大学自然科学学报, 1982, 1: 16-40.

[13] Li R H, Chen Z Y, Wu W. Generalized difference methods for differential equations: Numerical analysis of finite volume methods[M]. New York: Marcel Dekker, 2000.

[14] Huang C S, Huang C H, Wang S. A fitted finite volume method for the valuation of options on assets with stochastic volatilities[J]. Journal of Computers, 2006, 77: 297-320.

[15] Angermann L, Wang S. Convergence of a fitted finite volume method for the penalized Black-Scholes equation governing European and American option pricing[J]. Journal of Numerical Mathematics, 2007, 106: 1-40.

[16] Wang S. A novel fitted finite volume method for the Black-Scholes equation governing option pricing[J]. IMA Journal of Numerical Analysis, 2004, 24: 699-720.

[17] 孙玉东, 师义民, 董艳. 永久美式期权定价的有限体积元方法[J]. 高校应用数学学报, 2012, 27: 253-264.

[18] 李广志, 康淑瑰. 美式期权定价的有限体积元方法[J]. 系统科学与数学, 2012, 32: 1092-1108.

[19] Murty K. Linear complementarity, linear and nonlinear programming[M]. Heldermann: Berlin, 1988.

[20] Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Journal of Numerical Linear Algebra with Applications, 2010, 17: 917-933.

[21] Zheng N, Yin J F. Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an H+-matrix[J]. Journal of Computational and Applied Mathematics, 2014, 260: 281-293.

[22] Zheng N, Yin J F. Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem[J]. Journal of Numerical Algorithms, 2013, 64: 245-262.

[23] 吴微, 李荣华. 解一维二阶椭圆和抛物型微分方程的广义差分法[J]. 数学年刊, 1984, A: 303-312.

[24] Dong J L, Jiang M Q. A modified modulus method for symmetric positive-definite linear complementarity problems[J]. Journal of Numerical Linear Algebra with Applications, 2009, 16: 129-143.
[1] 胡雅伶, 彭拯, 章旭, 曾玉华. 一种求解非线性互补问题的多步自适应Levenberg-Marquardt算法[J]. 计算数学, 2021, 43(3): 322-336.
[2] 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412.
[3] 丁戬, 殷俊锋. 求解一类非线性互补问题的松弛two-sweep模系矩阵分裂迭代法[J]. 计算数学, 2021, 43(1): 118-132.
[4] 吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236.
[5] 李枝枝, 柯艺芬, 储日升, 张怀. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405.
[6] 戴平凡, 李继成, 白建超. 解线性互补问题的预处理加速模Gauss-Seidel迭代方法[J]. 计算数学, 2019, 41(3): 308-319.
[7] 李郴良, 田兆鹤, 胡小媚. 一类弱非线性互补问题的广义模系矩阵多分裂多参数加速松弛迭代方法[J]. 计算数学, 2019, 41(1): 91-103.
[8] 郑华, 罗静. 一类H矩阵线性互补问题的预处理二步模基矩阵分裂迭代方法[J]. 计算数学, 2018, 40(1): 24-32.
[9] 范斌, 马昌凤, 谢亚君. 求解非线性互补问题的一类光滑Broyden-like方法[J]. 计算数学, 2013, 35(2): 181-194.
[10] 张丽丽. 关于线性互补问题的模系矩阵分裂迭代方法[J]. 计算数学, 2012, 34(4): 373-386.
[11] 陈争, 马昌凤. 求解非线性互补问题一个新的 Jacobian 光滑化方法[J]. 计算数学, 2010, 32(4): 361-372.
[12] 蒋娟, 沈祖和, 曹德欣. 一类线性互补问题解存在性判断的区间方法[J]. 计算数学, 2009, 31(2): 159-166.
[13] 王华, 乌力吉. 垂直线性互补问题的一种光滑算法[J]. 计算数学, 2009, 31(1): 1-14.
[14] 张铁,祝丹梅. 美式期权定价问题的变网格差分方法[J]. 计算数学, 2008, 30(4): 379-387.
[15] 屈彪,王长钰,张树霞,. 一种求解非线性互补问题的方法及其收敛性[J]. 计算数学, 2006, 28(3): 247-258.
阅读次数
全文


摘要