• 论文 •

### 一种基于Chebyshev迭代解非线性方程组的方法

1. 合肥工业大学数学学院, 合肥 230009
• 收稿日期:2013-12-28 出版日期:2015-02-15 发布日期:2015-03-10
• 通讯作者: 张旭, Email: zhangxu8587@126.com.
• 基金资助:

国家自然科学基金-广东联合基金重点项目(U1135003)和国家自然科学基金项目(61070227).

Liu Qing, Tan Jieqing, Zhang Xu. A METHOD BASED ON CHEBYSHEV ITERATION FOR SOLVING THE SYSTEM OF NONLINEAR EQUATIONS[J]. Mathematica Numerica Sinica, 2015, 37(1): 14-20.

### A METHOD BASED ON CHEBYSHEV ITERATION FOR SOLVING THE SYSTEM OF NONLINEAR EQUATIONS

Liu Qing, Tan Jieqing, Zhang Xu

1. School of Mathematics, Hefei University of Technology, Hefei 230009, China
• Received:2013-12-28 Online:2015-02-15 Published:2015-03-10

In this paper, we derive a new iterative method, which is based on Newton and Chebyshev iteration, to solve the system of nonlinear equations with order of convergence higher than other competitive methods. Numerical examples are given to show that the proposed method outperforms the existing methods in that it has less iterations.

MR(2010)主题分类:

()
 [1] Darvish M T, Barati A. Super cubic iterative methods to solve systems of nonlinear equations[J]. Applied Mathematics and Computation, 2007, 188(2): 1678-1685.[2] Noor M A, Waseem M. Some iterative methods for solving a system of nonlinear equations[J]. Computers and Mathematics with Applications, 2009, 57(1): 101-106.[3] Cordero A, Torregrosa J R, Vassileva M P. Pseudocomposition: A technique to design predictor-corrector methods for systems of nonlinear equations[J]. Applied Mathematics and Computation, 2012, 218(23): 11496-11504.[4] Cordero A, Torregrosa J R, Varaiants of Newtons method using fifth-order quadrature formulas[J]. Applied Mathematics and Computation. 2007, 190(1): 686-698.[5] 代璐璐, 檀结庆. 两种解非线性方程组的四阶迭代方法[J]. 数值 计算与计算机应用, 2012, 33(2): 121-128.[6] 张旭, 檀结庆. 三步五阶迭代方法解非线性方程组[J]. 计算数学, 2013, 35(3): 297-304.[7] Ortega J M, Rheinboldt W C. Iterative solution of nonlinear equations in several variables[M]. New York and London: Academic Press, 1970.[8] Amat S, Bermudez C, Busqueier S, Legaz M J, Plaza S. On a family of high-order iterative methods under kantorovich conditions and some applications[J]. Abstract and Applied Analysis, 2012, http://dx.doi.org/10.1155/2012/782170.[9] Ezquerro J A, Grau-Sanchez M, Grau A, Hernandez M A, Noguera M, Romero N. On iterative method with accelerated convergence for solving systems of nonlinear equations[J]. Journal of Optimization Theory and Applications, 2011, 151(1): 163-174.[10] Cordero A, House J L, Martinez E, Torregrosa J R. A modified Newton-Jarratt's composition[J]. Numerical Algorithms, 2010, 55(1): 87-99.
 [1] 马积瑞, 范金燕. 信赖域方法在Hölderian局部误差界下的收敛性质[J]. 计算数学, 2021, 43(4): 484-492. [2] 刘金魁, 孙悦, 赵永祥. 凸约束伪单调方程组的无导数投影算法[J]. 计算数学, 2021, 43(3): 388-400. [3] 王同科, 樊梦. 第二类端点奇异Fredholm积分方程的分数阶退化核方法[J]. 计算数学, 2019, 41(1): 66-81. [4] 裕静静, 江平, 刘植. 两类五阶解非线性方程组的迭代算法[J]. 计算数学, 2017, 39(2): 151-166. [5] 郭俊, 吴开腾, 张莉, 夏林林. 一种新的求非线性方程组的数值延拓法[J]. 计算数学, 2017, 39(1): 33-41. [6] 张旭, 檀结庆, 艾列富. 一种求解非线性方程组的3p阶迭代方法[J]. 计算数学, 2017, 39(1): 14-22. [7] 许秀秀, 黄秋梅. 拟等级网格下非线性延迟微分方程间断有限元法[J]. 计算数学, 2016, 38(3): 281-288. [8] 樊梦, 王同科, 常慧宾. 非光滑函数的分数阶插值公式[J]. 计算数学, 2016, 38(2): 212-224. [9] 张英晗, 杨小远. 一类带有空间时间白噪音随机弹性方程的全离散差分格式[J]. 计算数学, 2016, 38(1): 25-46. [10] 孟文辉, 王连堂. Helmholtz方程周期Green函数及其偏导数截断误差收敛阶的分析[J]. 计算数学, 2015, 37(2): 123-136. [11] 王洋, 伍渝江, 付军. 一类弱非线性方程组的Picard-MHSS迭代方法[J]. 计算数学, 2014, 36(3): 291-302. [12] 张旭, 檀结庆. 三步五阶迭代方法解非线性方程组[J]. 计算数学, 2013, 35(3): 297-304. [13] 杨爱利, 伍渝江, 李旭, 孟玲玲. 一类非线性方程组的Newton-PSS迭代法[J]. 计算数学, 2012, 34(4): 329-340. [14] 陈传淼, 胡宏伶, 雷蕾, 曾星星. 非线性方程组的Newton流线法[J]. 计算数学, 2012, 34(3): 235-258. [15] 杨柳, 陈艳萍. 求解非线性方程组的一种新的全局收敛的Levenberg-Marquardt算法[J]. 计算数学, 2008, 30(4): 388-396.