王刚1, 周小辉2, 王宝勤1
王刚, 周小辉, 王宝勤. n维特殊伸缩矩阵的构造与n维广义插值细分函数向量[J]. 计算数学, 2013, 35(4): 377-384.
Wang Gang, Zhou Xiaohui, Wang Baoqin. THE CONSTRUCTION OF n-DIMENSIONAL SPECIAL DILATION MATRIX AND n-DIMENSIONAL GENERALIZED INTERPOLATING REFINABLE FUNCTION VECTOR[J]. Mathematica Numerica Sinica, 2013, 35(4): 377-384.
Wang Gang1, Zhou Xiaohui2, Wang Baoqin1
MR(2010)主题分类:
分享此文:
[1] Yang Shouzhi. Compactly supported orthogonal interpolation multi-wavelets and multi-scaling functions[J]. Acta Mathematica Sinica, 2005, 48 (3): 565-572.[2] Li Rui, Wu Guochang. The orthogonal interpolating balanced multi-wavelet with rational coefficients[J]. Chaos, Solitons and Fractals, 2009, 41 (2): 892-899.[3] Yang Shouzhi, Wang Hongyong. High-order balanced multi-wavelets with dilation factor a[J]. Applied Mathematics and Computation, 2006, 181 (1): 362-369.[4] Karsten Koch. Interpolating scaling vectors and multiwavelets in Rd[M]. Berlin: Logos Verlag Berlin, 2007.[5] Cabrelli C, Heil C, Molter U. Accuracy of lattice translation of several multidimensional refinable function[J]. J. Approx. Theory, 1998, 95: 5-52.[6] Lebrun J, Vetterli M. Balanced multi-wavelets theory and design[J]. IEEE Trans Signal Process, 1998, 46 (4): 1119-1125.[7] Lebrun J, Vetterli M. High order balanced multi-wavelets[J]. In: Proc IEEE Int Conf Acoustics, Speech and Signal Processing, 1998, 3: 1529-1532.[8] Lian J A. Analysis-ready multi-wavelets (Armlet) for processing scalar-valude Signal[J]. IEEE Processing letters, 2004, 11: 205-208.[9] 杨守志, 杨晓忠. 广义基插值的正交多尺度函数和多小波[J]. 数学物理学报, 2007, 27 (3) , 18-23.[10] 江力, 朱善华, 吕勇. a尺度紧支撑插值正交多小波平衡性[J]. 数值计算与计算机应用, 2009, 30 (1): 10-20.[11] 杨守志, 曹飞龙.伸缩因子为a的r重正交平衡多小波[J]. 自然科学进展. 2005, 16 (2): 177-182.[12] 李尤发, 杨守志. 仿酉对称矩阵的矩阵及对称正交多小波滤波器 带的参数化[J]. 数学学报, 2010, 53 (2): 279-290.[13] 丛雪瑞, 崔丽鸿. 具有高逼近阶的插值多尺度函数的构造[J]. 北京化工大学学报, 2008, 35 (4): 108-112. |
[1] | 陈一鸣, 李俊贤, 冯斌, 管巍. Hermite三次样条多小波自然边界元法[J]. 计算数学, 2010, 32(1): 75-80. |
[2] | 杨守志,唐远炎,程正兴. α尺度紧支撑正交多小波的构造[J]. 计算数学, 2002, 24(4): 451-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||