• 论文 •

### 关于线性互补问题的模系矩阵分裂迭代方法

1. 河南财经政法大学数学与信息科学系, 郑州 450002
• 收稿日期:2012-07-03 出版日期:2012-11-15 发布日期:2012-11-12

Zhang Lili. ON MODULUS-BASED MATRIX SPLITTING ITERATION METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS[J]. Mathematica Numerica Sinica, 2012, 34(4): 373-386.

### ON MODULUS-BASED MATRIX SPLITTING ITERATION METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS

Zhang Lili

1. Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450002, China
• Received:2012-07-03 Online:2012-11-15 Published:2012-11-12

The modulus-based matrix splitting iteration method is a powerful tool for solving large sparse linear complementarity problems. The goal of this paper is to summarize its recent development and existing results, which mainly include the corresponding multisplitting iteration methods, two-stage multisplitting iteration methods and two-step multisplitting iteration methods, as well as their convergence theories.

MR(2010)主题分类:

()
 [1] Bai Z Z. A class of two-stage iterative methods for systems of weakly nonlinear equations[J].Numer. Algorithms, 1997, 14: 295-319.[2] Bai Z Z. Parallel multisplitting two-stage iterative methods for large sparse systems of weaklynonlinear equations[J]. Numer. Algorithms, 1997, 15: 347-372.[3] Bai Z Z. On the convergence of the multisplitting methods for the linear complementarity problem[J]. SIAM J. Matrix Anal. Appl., 1999, 21: 67-78.[4] Bai Z Z. Convergence analysis of the two-stage multisplitting method[J]. Calcolo, 1999, 36: 63-74.[5] Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numer. Linear Algebra Appl., 2010, 17: 917-933.[6] Bai Z Z and Evans D J. Matrix multisplitting relaxation methods for linear complementarityproblems[J]. Int. J. Comput. Math., 1997, 63: 309-326.[7] Bai Z Z and Evans D J. Matrix multisplitting methods with applications to linear complementarityproblems: parallel synchronous and chaotic methods[J]. Réseaux et Systèmes Répartis:Calculateurs Parallelès, 2001, 13: 125-154.[8] Bai Z Z, Sun J C and Wang D R. A unified framework for the construction of various matrixmultisplitting iterative methods for large sparse system of linear equations[J]. Comput. Math.Appl., 1996, 32: 51-76.[9] Bai Z Z and Zhang L L. Modulus-based synchronous multisplitting iteration methods for linearcomplementarity problems[J]. Numer. Linear Algebra Appl., 2012, DOI: 10.1002/nla.1835.[10] Bai Z Z and Zhang L L. Modulus-based synchronous two-stage multisplitting iteration methodsfor linear complementarity problems[J]. Numer. Algorithms, 2012, DOI: 10.1007/s11075-012-9566-x.[11] Berman A and Plemmons R J. Nonnegative Matrices in the Mathematical Sciences, AcademicPress, New York, 1979.[12] Cottle R W, Pang J S and Stone R E. The Linear Complementarity Problem, Academic Press,San Diego, 1992.[13] Dong J L and Jiang M Q. A modified modulus method for symmetric positive-definite linearcomplementarity problems[J]. Numer. Linear Algebra Appl., 2009, 16: 129-143.[14] Ferris M C and Pang J S. Engineering and economic applications of complementarity problems[J].SIAM Rev., 1997, 39: 669-713.[15] Frommer A and Mayer G. Convergence of relaxed parallel multisplitting methods[J]. LinearAlgebra Appl., 1989, 119: 141-152.[16] Frommer A and Szyld D B. H-splittings and two-stage iterative methods[J]. Numer. Math., 1992,63: 345-356.[17] Hadjidimos A. Accelerated overrelaxation method[J]. Math. Comput., 1978, 32: 149-157.[18] Hadjidimos A and Tzoumas M. Nonstationary extrapolated modulus algorithms for the solutionof the linear complementarity problem[J]. Linear Algebra Appl., 2009, 431: 197-210.[19] Hadjidimos A and Yeyios A. Symmetric accelerated overrelaxation (SAOR) method[J]. Math.Comput. Simul., 1982, 24: 72-76.[20] Hu J G. Scaling transformation and convergence of splittings of matrix[J]. Math. Numer. Sinica,983, 5: 72-78.[21] Lemke C E and Howson J T. Equilibrium points of bimatrix games[J]. SIAM J. Appl. Math.,1964, 12: 413-423.[22] Machida N, Fukushima M and Ibaraki T. A multisplitting method for symmetric linear complementarityproblems[J]. J. Comput. Appl. Math., 1995, 62: 217-227.[23] Murty K G. Linear Complementarity, Linear and Nonlinear Programming, Heldermann-Verlag,Berlin, 1988.[24] O’Leary D P and White R E. Multi-splittings of matrices and parallel solution of linear systems[J]. SIAM J. Algebraic Discrete Methods, 1985, 6: 630-640.[25] Schäfer U. On the modulus algorithm for the linear complementarity problem[J]. Oper. Res.Lett., 2004, 32: 350-354.[26] Szyld D B and Jones M T. Two-stage and multisplitting methods for the parallel solution oflinear systems[J]. SIAM J. Matrix Anal. Appl., 1992, 13: 671-679.[27] Van Bokhoven W M G. Piecewise-linear Modelling and Analysis, Proefschrift, Eindhoven, 1981.[28] Varga R S. Matrix Iterative Analysis, 2nd Edition, Springer, Berlin, 2000.[29] Zhang L L. Two-step modulus-based matrix splitting iteration method for linear complementarityproblems[J]. Numer. Algorithms, 2011, 57: 83-99.[30] Zhang L L. Two-stage multisplitting iteration methods using modulus-based matrix splitting asinner iteration for linear complementarity problems, submitted.[31] Zhang L L. Two-step modulus-based synchronous multisplitting iteration methods for linearcomplementarity problems, submitted.
 [1] 胡雅伶, 彭拯, 章旭, 曾玉华. 一种求解非线性互补问题的多步自适应Levenberg-Marquardt算法[J]. 计算数学, 2021, 43(3): 322-336. [2] 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412. [3] 丁戬, 殷俊锋. 求解一类非线性互补问题的松弛two-sweep模系矩阵分裂迭代法[J]. 计算数学, 2021, 43(1): 118-132. [4] 吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236. [5] 李枝枝, 柯艺芬, 储日升, 张怀. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405. [6] 戴平凡, 李继成, 白建超. 解线性互补问题的预处理加速模Gauss-Seidel迭代方法[J]. 计算数学, 2019, 41(3): 308-319. [7] 李郴良, 田兆鹤, 胡小媚. 一类弱非线性互补问题的广义模系矩阵多分裂多参数加速松弛迭代方法[J]. 计算数学, 2019, 41(1): 91-103. [8] 郑华, 罗静. 一类H矩阵线性互补问题的预处理二步模基矩阵分裂迭代方法[J]. 计算数学, 2018, 40(1): 24-32. [9] 甘小艇, 殷俊锋. 二次有限体积法定价美式期权[J]. 计算数学, 2015, 37(1): 67-82. [10] 范斌, 马昌凤, 谢亚君. 求解非线性互补问题的一类光滑Broyden-like方法[J]. 计算数学, 2013, 35(2): 181-194. [11] 陈争, 马昌凤. 求解非线性互补问题一个新的 Jacobian 光滑化方法[J]. 计算数学, 2010, 32(4): 361-372. [12] 蒋娟, 沈祖和, 曹德欣. 一类线性互补问题解存在性判断的区间方法[J]. 计算数学, 2009, 31(2): 159-166. [13] 王华, 乌力吉. 垂直线性互补问题的一种光滑算法[J]. 计算数学, 2009, 31(1): 1-14. [14] 蔡放,熊岳山,王广礼,骆志刚,. 矩阵多分裂迭代法的收敛条件[J]. 计算数学, 2007, 29(4): 367-376. [15] 屈彪,王长钰,张树霞,. 一种求解非线性互补问题的方法及其收敛性[J]. 计算数学, 2006, 28(3): 247-258.