• 论文 • 下一篇
杨爱利, 伍渝江, 李旭, 孟玲玲
杨爱利, 伍渝江, 李旭, 孟玲玲. 一类非线性方程组的Newton-PSS迭代法[J]. 计算数学, 2012, 34(4): 329-340.
Yang Aili, Wu Yujiang, Li Xu, Meng Lingling. ON NEWTON-PSS METHODS FOR THE SYSTEM OF NONLINEAR EQUATIONS[J]. Mathematica Numerica Sinica, 2012, 34(4): 329-340.
Yang Aili, Wu Yujiang, Li Xu, Meng Lingling
MR(2010)主题分类:
分享此文:
[1] Bai Z Z. A class of two-stage iterative methods for systems of weakly nonlinear equations [J].Numer. Algor., 1997, 14: 295-319.[2] Ortega J M, Rheinboldt W C. Iterative solution of nonlinear equations in several variables[M].Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.[3] Rheinboldt W C. Methods for Solving Systems of Nonlinear Equations[M]. Society for Industrialand Applied Mathematics, Philadephia, PA, 1998.[4] Dembo R, Eisenstat S, Steihaug T. Inexact Newton methods [J]. SIAM J. Numer. Anal., 1982,19: 400-408.[5] Benzi M, Szyld D B. Existence and uniqueness of splittings for stationary iterative methods withapplications to alternating methods [J]. Numer. Math., 1997, 76: 309-321.[6] Deuflhard P. Newton Methods for Nonlinear Problems[M]. Springer-Verlag, Berlin Heidelberg,2004.[7] An H B, Bai Z Z. A globally convergent Newton-GMRES method for large sparse systems ofnonlinear equations [J]. Appl. Numer. Math., 2007, 57(3): 235-252.[8] Saad Y. Iterative Methods for Sparse Linear Systems[M]. Society for Industrial and AppliedMathematics, Philadelphia, PA, USA, 2nd edition, 2003.[9] Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitianpositive definite linear systems[J]. SIAM J. Matrix Anal. Appl., 2002, 24: 603-626.[10] 杨爱利, 伍渝江, 宋伦继.基于多层增量未知元方法的一类三维对流扩散方程的研究[J].数学物理学报, 2009, 29(3):564-572.[11] Bai Z Z, Guo X P. On Newton-HSS methods for systems of nonlinear equations with positivedefiniteJacobian matrices [J]. J. Comput. Math., 2010, 28: 235-260.[12] Bai Z Z, Yang X. On HSS-based iteration methods for weakly nonlinear systems [J]. Appl. Numer.Math., 2009, 59(12): 2923-2936.[13] 安恒斌, 白中治.NGLM: 一类全局收敛的Newton-GMRES方法[J].计算数学, 2005, 27(2): 151-174.[14] 白中治, 安恒斌.关于Newton-GMRES方法的有效变形与全局收敛性研究[J].数值计算与计算机应用, 2005, 26(4): 291-300.[15] Guo X P, Duff I S. Semilocal and global convergence of the Newton-HSS method for systems ofnonlinear equations [J]. Numer. Linear Algebra Appl., 2011, 18(3): 299-315.[16] Bai Z Z, Golub G H, Lu L Z, Yin J F. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems [J]. SIAM J. Sci. Comput., 2005, 26: 844-863.[17] Yang A L, An J, Wu Y J. A generalized preconditioned HSS method for non-Hermitian positivedefinite linear systems [J]. Appl. Math. Comput., 2010, 216(6): 1715-1722. |
[1] | 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33. |
[2] | 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118. |
[3] | 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443. |
[4] | 马积瑞, 范金燕. 信赖域方法在Hölderian局部误差界下的收敛性质[J]. 计算数学, 2021, 43(4): 484-492. |
[5] | 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321. |
[6] | 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366. |
[7] | 刘金魁, 孙悦, 赵永祥. 凸约束伪单调方程组的无导数投影算法[J]. 计算数学, 2021, 43(3): 388-400. |
[8] | 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412. |
[9] | 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226. |
[10] | 袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16. |
[11] | 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109. |
[12] | 李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117. |
[13] | 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471. |
[14] | 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456. |
[15] | 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||