• 论文 •    下一篇

一类非线性方程组的Newton-PSS迭代法

杨爱利, 伍渝江, 李旭, 孟玲玲   

  1. 兰州大学数学与统计学院, 兰州 730000
  • 收稿日期:2012-03-10 出版日期:2012-11-15 发布日期:2012-11-12
  • 基金资助:

    国家基础研究规划973项目(2011CB706903)和国家自然科学基金天元基金(11026064)资助

杨爱利, 伍渝江, 李旭, 孟玲玲. 一类非线性方程组的Newton-PSS迭代法[J]. 计算数学, 2012, 34(4): 329-340.

Yang Aili, Wu Yujiang, Li Xu, Meng Lingling. ON NEWTON-PSS METHODS FOR THE SYSTEM OF NONLINEAR EQUATIONS[J]. Mathematica Numerica Sinica, 2012, 34(4): 329-340.

ON NEWTON-PSS METHODS FOR THE SYSTEM OF NONLINEAR EQUATIONS

Yang Aili, Wu Yujiang, Li Xu, Meng Lingling   

  1. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
  • Received:2012-03-10 Online:2012-11-15 Published:2012-11-12
正定反Hermite分裂(PSS)方法是求解大型稀疏非Hermite正定线性代数方程组的一类无条件收敛的迭代算法.将其作为不精确Newton方法的内迭代求解器,我们构造了一类用于求解大型稀疏且具有非Hermite正定Jacobi矩阵的非线性方程组的不精确Newton-PSS方法,并对方法的局部收敛性和半局部收敛性进行了详细的分析.数值结果验证了该方法的可行性与有效性.
Positive-definite and skew-Hermitian splitting (PSS) method is an unconditionally convergent iterative method for solving large sparse non-Hermitian positive definite system of linear equations. By making use of PSS iteration as the inner solver of inexact Newton method, we establish a class of inexact Newton-PSS methods for solving large sparse systems of nonlinear equations with positive-definite Jacobian matrices at the solution points. The local and semilocal convergence properties are analyzed under some proper assumptions. Numerical results are given to examine the feasibility and effectivity of inexact Newton-PSS methods.

MR(2010)主题分类: 

()
[1] Bai Z Z. A class of two-stage iterative methods for systems of weakly nonlinear equations [J].Numer. Algor., 1997, 14: 295-319.

[2] Ortega J M, Rheinboldt W C. Iterative solution of nonlinear equations in several variables[M].Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[3] Rheinboldt W C. Methods for Solving Systems of Nonlinear Equations[M]. Society for Industrialand Applied Mathematics, Philadephia, PA, 1998.

[4] Dembo R, Eisenstat S, Steihaug T. Inexact Newton methods [J]. SIAM J. Numer. Anal., 1982,19: 400-408.

[5] Benzi M, Szyld D B. Existence and uniqueness of splittings for stationary iterative methods withapplications to alternating methods [J]. Numer. Math., 1997, 76: 309-321.

[6] Deuflhard P. Newton Methods for Nonlinear Problems[M]. Springer-Verlag, Berlin Heidelberg,2004.

[7] An H B, Bai Z Z. A globally convergent Newton-GMRES method for large sparse systems ofnonlinear equations [J]. Appl. Numer. Math., 2007, 57(3): 235-252.

[8] Saad Y. Iterative Methods for Sparse Linear Systems[M]. Society for Industrial and AppliedMathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[9] Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitianpositive definite linear systems[J]. SIAM J. Matrix Anal. Appl., 2002, 24: 603-626.

[10] 杨爱利, 伍渝江, 宋伦继.基于多层增量未知元方法的一类三维对流扩散方程的研究[J].数学物理学报, 2009, 29(3):564-572.

[11] Bai Z Z, Guo X P. On Newton-HSS methods for systems of nonlinear equations with positivedefiniteJacobian matrices [J]. J. Comput. Math., 2010, 28: 235-260.

[12] Bai Z Z, Yang X. On HSS-based iteration methods for weakly nonlinear systems [J]. Appl. Numer.Math., 2009, 59(12): 2923-2936.

[13] 安恒斌, 白中治.NGLM: 一类全局收敛的Newton-GMRES方法[J].计算数学, 2005, 27(2): 151-174.

[14] 白中治, 安恒斌.关于Newton-GMRES方法的有效变形与全局收敛性研究[J].数值计算与计算机应用, 2005, 26(4): 291-300.

[15] Guo X P, Duff I S. Semilocal and global convergence of the Newton-HSS method for systems ofnonlinear equations [J]. Numer. Linear Algebra Appl., 2011, 18(3): 299-315.

[16] Bai Z Z, Golub G H, Lu L Z, Yin J F. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems [J]. SIAM J. Sci. Comput., 2005, 26: 844-863.

[17] Yang A L, An J, Wu Y J. A generalized preconditioned HSS method for non-Hermitian positivedefinite linear systems [J]. Appl. Math. Comput., 2010, 216(6): 1715-1722.
[1] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[2] 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118.
[3] 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443.
[4] 马积瑞, 范金燕. 信赖域方法在Hölderian局部误差界下的收敛性质[J]. 计算数学, 2021, 43(4): 484-492.
[5] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[6] 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366.
[7] 刘金魁, 孙悦, 赵永祥. 凸约束伪单调方程组的无导数投影算法[J]. 计算数学, 2021, 43(3): 388-400.
[8] 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412.
[9] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226.
[10] 袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16.
[11] 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109.
[12] 李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117.
[13] 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471.
[14] 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.
[15] 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50.
阅读次数
全文


摘要